• 제목/요약/키워드: Nonlinear dynamic model

검색결과 1,405건 처리시간 0.033초

Advanced Process Control of the Critical Dimension in Photolithography

  • Wu, Chien-Feng;Hung, Chih-Ming;Chen, Juhn-Horng;Lee, An-Chen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권1호
    • /
    • pp.12-18
    • /
    • 2008
  • This paper describes two run-to-run controllers, a nonlinear multiple exponential-weight moving-average (NMEWMA) controller and a dynamic model-tuning minimum-variance (DMTMV) controller, for photolithography processes. The relationships between the input recipes (exposure dose and focus) and output variables (critical dimensions) were formed using an experimental design method, and the photolithography process model was built using a multiple regression analysis. Both the NMEWMA and DMTMV controllers could update the process model and obtain the optimal recipes for the next run. Quantified improvements were obtained from simulations and real photolithography processes.

역동력학과 퍼지기법을 이용한 DC 모터의 속도제어 (DC Motor Speed Control Using Inverse Dynamics and the Fuzzy Technique)

  • 김병만;유성호;박승수;김종화;진강규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.138-138
    • /
    • 2000
  • In this paper, a methodology for designing a controller based on inverse dynamics for speed control of DC motors is presented. The proposed controller consists of a prefilter, the inverse dynamic model of a system and a fuzzy logic controller. The prefilter prevents high frequency effects from the inverse dynamic model. The model of the system is characterized by a nonlinear equation with coulomb friction. The fuzzy logic controller regulates the error between the set-point and the system output which may be caused by disturbances and it simultaneously traces the change o( the reference input. The parameters of the model are estimated by a genetic a]gorithm. An experimental work on a DC motor system is carried out to illustrate the performance of the proposed controller

  • PDF

종동력을 받는 이중진자의 혼돈운동 연구 (Chaotic Behavior of a Double Pendulum Subjected to Follower Force)

  • 장안배;이재영
    • 소음진동
    • /
    • 제7권3호
    • /
    • pp.439-447
    • /
    • 1997
  • In this study, the dynamic instabilities of a nonlinear elastic system subjected to follower forces are investigated. The two-degree-of-freedom double pendulum model with nonlinear geometry, cubic spring, and linear viscous damping is used for the study. The constant, the initial impact forces acting at the end of the model are considered. The chaotic nature of the system is identified using the standard methods, such as time histories, power density spectrum, and Poincare maps. The responses are chaotic and unpredictable due to the sensitivity to initial conditions. The sensitivities to parameters, such as geometric initial imperfections, magnitude of follower force, direction control constant, and viscous damping, etc., are analysed. Dynamic buckling loads are computed for various parameters, where the loads are changed drastically for the small change of parameters.

  • PDF

Expected extreme value of pounding force between two adjacent buildings

  • Rahimi, Sepideh;Soltani, Masoud
    • Structural Engineering and Mechanics
    • /
    • 제61권2호
    • /
    • pp.183-192
    • /
    • 2017
  • Seismic pounding between adjacent buildings with inadequate separation and different dynamic characteristics can cause severe damage to the colliding buildings. Efficient estimation of the maximum pounding force is required to control the extent of damage in adjacent structures or develop an appropriate mitigation method. In this paper, an analytical approach on the basis of statistical relations is presented for approximate computation of extreme value of pounding force between two adjacent structures with equal or unequal heights subjected to stationary and non-stationary excitations. The nonlinearity of adjacent structures is considered using Bouc-Wen model of hysteresis and the pounding effect is simulated by applying the nonlinear viscoelastic model. It is shown that the proposed approach can significantly save computational costs by obviating the need for performing dynamic analysis. To assess the reliability and accuracy of the proposed approach, the results are compared with those obtained from nonlinear dynamic analysis.

새로운 동적 멀티레이어 퍼셉트론 구조 (A new Dynamic Multilayer Perceptron Structure)

  • 김동원;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.806-808
    • /
    • 2000
  • We propose a new Dynamic Multilayer Perceptorn(DMP) architecture for optimal model identification of complex and nonlinear system in this paper. The proposed DMP scheme is presented as the generic and advanced type based on the GMDH(Group Method of Data Handling) method for the limitation of GMDH under only two system input variables. It is worth stressing that the number of the layers and the nodes in each layer of the DMP are not predetermined, unlike in the case of the popular multilayer perceptron structure, but these are generated in a dynamic manner. The experimental part of the study comes with representative nonlinear static system. Comparative analysis is included and shows that a new DMP can produce the model with higher accuracy than previous other works.

  • PDF

동적퍼지모델기반 고장진단 시스템 및 응용 (Dynamic Fuzzy Model based Fault Diagnosis System and it's Application)

  • 배상욱;이종렬;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.627-629
    • /
    • 1999
  • This paper presents a new FDI scheme based on dynamic fuzzy model(DFM) for the nonlinear system. The dynamic behavior of a nonlinear system is represented by a set of local linear models. The parameters of the DFM are identified in on-line and aggregated to generate a residual vector by the approximate reasoning. The neural network classifer learns the relationship between the residual vector and fault type and used both for the detection and isolation of process faults We apply the proposed FDI scheme to the FDI system design for a two-tank system and show the usefulness of the proposed scheme.

  • PDF

차량용 충격흡수기의 비선형 동적거동 모델링 및 감쇠력 특성해석에 대한 연구 (A Study on the Nonlinear Dynamic Modeling and Analysis of Damping Force Characteristics of Automotive Shock Absorber)

  • 이춘태;곽동훈;정봉호;이지걸
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.104-111
    • /
    • 2003
  • The performance of shock absorber is directly related to the car behaviour and performance, both for handling and comfort. In this study, a mathematical nonlinear dynamic model and computational method are introduced to study the flow and performance of shock absorber. The flow characteristics of components(piston and body valve) are investigated and applied to dynamic modeling of shock absorber to predict the damping force. The simulation results agree with the test data well. The shock absorber model proposed in this paper is applicable as a part of a full vehicle suspension simulation.

Theoretical formulation for vehicle-bridge interaction analysis based on perturbation method

  • Tan, Yongchao;Cao, Liang;Li, Jiang
    • Structural Engineering and Mechanics
    • /
    • 제82권2호
    • /
    • pp.191-204
    • /
    • 2022
  • A three-mass vehicle model including one rigid mass and two unsprung masses is adopted to predict the vehicle-bridge interaction (VBI) and to establish the nonlinear coupled governing equations. To overcome the numerical instability and large computation problems concerning the vehicle-bridge system, the perturbation method is used to convert the nonlinear coupled governing equations into a set of linear uncoupled equations. Formulas for bridge's natural frequencies considering both the VBI and the dynamic responses of bridge and vehicle are proposed. Compared with the numerical results obtained by the Newmark-β method, the theoretical solutions for natural frequencies and dynamic responses are validated. The effects of the important factors of unsprung mass, vehicle damping, surface irregularity on the natural frequencies and dynamic responses of bridge and vehicle are discussed, based on the theoretical solutions.

Dynamic Elastica에 의한 유연매체의 거동해석 (Analysis of Flexible Media Behavior by Dynamic Elastica)

  • 홍성권;지중근;장용훈;박노철;박영필
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.206-212
    • /
    • 2005
  • In many machines handling lightweight and flexible media, such as magnetic tape drives, xerographic copiers and sewing machines, the media must transit an open space. It is important to predict the static and dynamic behavior of the sheets with a high degree of reliability. The nonlinear theory of the dynamic elastica has often been used to a nonlinear dynamic deflection model. In this paper, the governing equation is derived and simulated by the finite difference method. The parametric cubic curve is applied for defining the guide shape. The dynamic contact conditions suggested by Klarbring is used to predict the direction of the flexible media according to the initial velocity and the friction coefficient. The analysis is also compared to the conventional model, showing that after contacting a $45^{\circ}$ wall, the directions of flexible media of two models are different.

Nonlinear Adaptive Control Law for ALFLEX Using Dynamic Inversion and Disturbance Accommodation Control Observer

  • Higashi, Daisaku;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1871-1876
    • /
    • 2005
  • In this paper, We present a new nonlinear adaptive control law using a disturbance accommodating control (DAC) observer for a Japanese automatic landing flight experiment vehicle called ALFLEX. A future spaceplane must have ability to deal with greater fluctuations in the stability and control derivatives of flight dynamics, because its flight region is much wider than that of conventional aircraft. In our previous studies, digital adaptive flight control systems have been developed based on a linear-parameter-varying (LPV) model depending on dynamic pressure, and obtained good simulation results. However, under previous control laws, it is difficult to accommodate uncertainties represented by disturbance and nonlinearity, and to design a stable flight control system. Therefore, in this study, we attempted to design a nonlinear adaptive control law using the DAC Observer and inverse dynamic methods. A good tracking property of the obtained system was confirmed in numerical simulation.

  • PDF