• 제목/요약/키워드: Nonlinear dynamic model

검색결과 1,405건 처리시간 0.025초

기하학적 비선형성을 고려한 종단 질량을 갖는 회전하는 외팔보의 모달 분석 (Modal Analysis for the Rotating Cantilever Beam with a Tip Mass Considering the Geometric Nonlinearity)

  • 김형래;정진태
    • 한국소음진동공학회논문집
    • /
    • 제26권3호
    • /
    • pp.281-289
    • /
    • 2016
  • In this paper, a new dynamic model for modal analysis of a rotating cantilever beam with a tip-mass is developed. The nonlinear strain such as von Karman type and the corresponding linearized stress are used to consider the geometric nonlinearity, and Euler-Bernoulli beam theory is applied in the present model. The nonlinear equations of motion and the associated boundary conditions which include the inertia of the tip-mass are derived through Hamilton's principle. In order to investigate modal characteristics of the present model, the linearized equations of motion in the neighborhood of the equilibrium position are obtained by using perturbation technique to the nonlinear equations. Since the effect of the tip-mass is considered to the boundary condition of the flexible beam, weak forms are used to discretize the linearized equations. Compared with equations related to stiffening effect due to centrifugal force of the present and the previous model, the present model predicts the dynamic characteristic more precisely than the another model. As a result, the difference of natural frequencies loci between two models become larger as the rotating speed increases. In addition, we observed that the mode veering phenomenon occurs at the certain rotating speed.

Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model

  • Hosseini, Seyed Mahmoud;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.255-271
    • /
    • 2018
  • This paper deals with the transient dynamic analysis and elastic wave propagation in a functionally graded graphene platelets (FGGPLs)-reinforced composite thick hollow cylinder, which is subjected to shock loading. A micromechanical model based on the Halpin-Tsai model and rule of mixture is modified for nonlinear functionally graded distributions of graphene platelets (GPLs) in polymer matrix of composites. The governing equations are derived for an axisymmetric FGGPLs-reinforced composite cylinder with a finite length and then solved using a hybrid meshless method based on the generalized finite difference (GFD) and Newmark finite difference methods. A numerical time discretization is performed for the dynamic problem using the Newmark method. The dynamic behaviors of the displacements and stresses are obtained and discussed in detail using the modified micromechanical model and meshless GFD method. The effects of the reinforcement of the composite cylinder by GPLs on the elastic wave propagations in both displacement and stress fields are obtained for various parameters. It is concluded that the proposed micromechanical model and also the meshless GFD method have a high capability to simulate the composite structures under shock loadings, which are reinforced by FGGPLs. It is shown that the modified micromechanical model and solution technique based on the meshless GFD method are accurate. Also, the time histories of the field variables are shown for various parameters.

SIMULATION OF STARTING PROCESS OF DIESEL ENGINE UNDER COLD CONDITIONS

  • Park, J.K.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.289-298
    • /
    • 2007
  • A nonlinear dynamic simulation model from cranking to idle speed is developed to optimize the cold start process of a diesel engine. Physically-based first order nonlinear differential equations and some algebraic equations describing engine dynamics and starter motor dynamics are used to model the performance of cold starting process which is very complex and involves many components including the cold start aiding method. These equations are solved using numerical schemes to describe the starting process of a diesel engine and to study the effects of cold starting parameters. The validity of this model is examined by a cold start test at $-20^{\circ}C$. Using the developed model the effects of the important starting variables on the cold starting processes were investigated. This model can be served as a tool for designing computer aided control systems that improve cold start performance.

접합부 해석모델에 따른 보통모멘트철골골조의 비선헝 응답평가 (The Evaluation of Nonlinear response of the Ordinary Moment Resisting Frames using different analytical joint model)

  • 원학재;한상환;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.222-229
    • /
    • 2000
  • The purpose of this study is to evaluate and make a comparison between the Ordinary Moment Resisting Frames using different analytical joint model for the Nonlinear response. For this purpose, 3-story structure was designed according to NEHRP 1994 Guidelines. And the center-line dimension model and model considering panel zone were used as analytical model for the structure. Nonlinear Static Procedure and Nonlinear Dynamic Procedure were used to evaluate seismic capacities and demands. The limitation in FEMA 273 was used as the variable number to predicte seismic demands of OMRFs. This analytical studies were performed with DRAIN-2DX modified by Shan Shi. Using the above results, the performance evaluation and seismic demands of OMRFs shall be performed. Finally NSP and NDP shall be compared.

  • PDF

Dynamic Hysteresis Model Based on Fuzzy Clustering Approach

  • Mourad, Mordjaoui;Bouzid, Boudjema
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.884-890
    • /
    • 2012
  • Hysteretic behavior model of soft magnetic material usually used in electrical machines and electronic devices is necessary for numerical solution of Maxwell equation. In this study, a new dynamic hysteresis model is presented, based on the nonlinear dynamic system identification from measured data capabilities of fuzzy clustering algorithm. The developed model is based on a Gustafson-Kessel (GK) fuzzy approach used on a normalized gathered data from measured dynamic cycles on a C core transformer made of 0.33mm laminations of cold rolled SiFe. The number of fuzzy rules is optimized by some cluster validity measures like 'partition coefficient' and 'classification entropy'. The clustering results from the GK approach show that it is not only very accurate but also provides its effectiveness and potential for dynamic magnetic hysteresis modeling.

Evaluation of Progressive Collapse Resisting Capacity of Tall Buildings

  • Kwon, Kwangho;Park, Seromi;Kim, Jinkoo
    • 국제초고층학회논문집
    • /
    • 제1권3호
    • /
    • pp.229-235
    • /
    • 2012
  • In this paper the progressive collapse potential of building structures designed for real construction projects were evaluated based on arbitrary column removal scenario using various alternate path methods specified in the GSA guidelines. The analysis model structures are a 22-story reinforced concrete moment frames with core wall building and a 44-story interior concrete core and exterior steel diagrid structure. The progressive collapse resisting capacities of the model structures were evaluated using the linear static, nonlinear static, and nonlinear dynamic analyses. The linear static analysis results showed that progressive collapse occurred in the 22-story model structure when an interior column was removed. However the structure turned out to be safe according to the nonlinear static and dynamic analyses. Similar results were observed in the 44-story diagrid structure. Based on the analysis results, it was concluded that, compared with nonlinear analysis procedures, the linear static method is conservative in the prediction of progressive collapse resisting capacity of building structure based on arbitrary column removal scenario.

특수 및 준특수 상세에 따른 철근콘크리트 전단벽의 내진성능평가 (Seismic Performance Evaluation of Reinforced Concrete Shear Wall Systems Designed with Special and Semi-Special Seismic Details)

  • 오해철;이기학;천영수;김태완
    • 한국지진공학회논문집
    • /
    • 제18권4호
    • /
    • pp.181-191
    • /
    • 2014
  • This research presents the nonlinear analysis model for reinforced concrete shear wall systems with special boundary elements as proposed by the Korean Building Code (KBC, 2009). In order to verify the analysis model, analytical results were compared with the experimental results obtained from previous studies. Established analytical model was used to perform nonlinear static and dynamic analyses. Analytical results showed that the semi-special shear wall improved significantly the performance in terms of ductility and energy dissipation as expected based on previous test results. Furthermore, nonlinear incremental dynamic analysis was performed using 20 ground motions. Based on computer analytical results, the ordinary shear wall, special shear wall and newly proposed semi-special shear wall systems were evaluated based on the methods in FEMA P965. The results based on the probabilistic approaches accounting for inherent uncertainties showed that the semi-special shear wall systems provide a high capacity/demand (ACMR) ratio owing to their details, which provide enough capacity to sustain large inelastic deformations.

스카이브릿지로 연결된 벨트월이 있는 고층건물의 효율적인 동적해석 (Efficient Dynamic Analysis of High-rise Buildings Having Belt Walls Connected by a Sky-Bridge)

  • 이동근;김현수;양아람;고현
    • 한국전산구조공학회논문집
    • /
    • 제22권3호
    • /
    • pp.231-242
    • /
    • 2009
  • 스카이브릿지의 연결시스템은 일반적으로 매우 큰 비선형성을 가지고 있으므로 연결된 건물의 동적거동을 정확하게 예측하여 스카이브릿지를 설계하기 위해서는 경계비선형 시간이력해석이 필요하다. 그러나 일반적인 유한요소 해석모델을 사용하여 전체 고층건물을 모형화하고 설계를 위하여 반복적인 경계비선형 시간이력해석을 수행한다면 해석에 소요되는 노력과 시간이 매우 클 것이다. 따라서 본 연구에서는 스카이브릿지로 연결된 고층건물의 효율적인 동적해석 및 진동제어 성능 평가를 위하여 벨트월의 효과를 고려한 등가의 캔틸레버모델을 제안하였다. 제안된 등가모델의 효율성 및 정확성을 검토하기 위하여 스카이브릿지로 연결된 49층과 42층 건물을 예제구조물로 사용하였고 풍하중에 대한 경계비선형 시간이력해석을 수행하였다. 해석결과 제안된 등가모델을 사용하면 스카이브릿지로 연결된 고층건물의 동적응답을 매우 효율적으로 파악할 수 있다는 것을 확인하였다.

비선형 내점법을 이용한 전력시스템의 평형점 최적화 (Power System Equilibrium Optimization (EOPT) with a Nonlinear Interior Point Method)

  • 송화창;로델 도사노
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1000-1006
    • /
    • 2007
  • This paper presents a methodology to calculate an optimal solution of equilibrium to differential algebraic equations for power systems. It employs a nonlinear interior point method to solve the optimization formulation which includes dynamic equations representing the two-axis synchronous generator model with AVR and speed governing controls, algebraic equations, and steady-state nonlinear loads. This paper also adopts two algorithms for the improvement of solution convergence. In power system analysis and control, equilibrium optimization (EOPT) is applicable for diverse purposes that need the consideration of dynamic model characteristics at a steady-state condition.

네트워크 기반 시간지연 시스템을 위한 리세트 제어 및 확률론적 예측기법을 이용한 온라인 학습제어시스템 (Online Learning Control for Network-induced Time Delay Systems using Reset Control and Probabilistic Prediction Method)

  • 조현철;심광열;이권순
    • 제어로봇시스템학회논문지
    • /
    • 제15권9호
    • /
    • pp.929-938
    • /
    • 2009
  • This paper presents a novel control methodology for communication network based nonlinear systems with time delay nature. We construct a nominal nonlinear control law for representing a linear model and a reset control system which is aimed for corrective control strategy to compensate system error due to uncertain time delay through wireless communication network. Next, online neural control approach is proposed for overcoming nonstationary statistical nature in the network topology. Additionally, DBN (Dynamic Bayesian Network) technique is accomplished for modeling of its dynamics in terms of casuality, which is then utilized for estimating prediction of system output. We evaluate superiority and reliability of the proposed control approach through numerical simulation example in which a nonlinear inverted pendulum model is employed as a networked control system.