• Title/Summary/Keyword: Nonlinear configuration

Search Result 284, Processing Time 0.026 seconds

Ultimate behavior of reinforced concrete cooling tower: Evaluation and comparison of design guidelines

  • Noh, Hyuk-Chun;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.223-240
    • /
    • 2006
  • Taking into account the geometrical and material nonlinearities, an ultimate behavior of reinforced concrete cooling tower shell in hyperbolic configuration is presented. The design wind pressures suggested in the guidelines of the US (ACI) and Germany (VGB), with or without the effect of internal suction, are employed in the analysis to examine the qualitative and quantitative characteristics of each design wind pressure. The geometrical nonlinearity is incorporated by the Green-Lagrange strain tensor. The nonlinear features of concrete, such as the nonlinear stress-strain relation in compression, the tensile cracking with the smeared crack model, an effect of tension stiffening, are taken into account. The biaxial stress state in concrete is represented by an improved work-hardening plasticity model. From the perspective of quality of wind pressures, the two guidelines are determined as highly correlated each other. Through the extensive analysis on the Niederaussem cooling tower in Germany, not only the ultimate load is determined but also the mechanism of failure, distribution of cracks, damage processes, stress redistributions, and mean crack width are examined.

A numerical study on behavior of CFRP strengthened shear wall with opening

  • Behfarnia, Kiachehr;Shirneshan, Ahmadreza
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.179-189
    • /
    • 2017
  • Concrete shear walls are one of the major structural lateral resisting systems in buildings. In some cases, due to the change in the occupancy of the structure or functional requirements like architectural and even mechanical ones, openings need to be provided and installed in structural walls after their construction. Providing these openings may significantly influence the structural behavior of the constructed wall. This paper considers the results of a nonlinear finite element analysis of shear walls with opening strengthened by carbon fiber reinforced polymer (CFRP) strips with different configurations. Details of bond-slip constitutive model of link elements to simulate the connections of FRP strips to concrete surface is presented. The proposed model in this research has been validated using experimental results available in the literature. The results indicated that the proposed configuration of CFRP strips significantly improved the lateral resistance and deformation capacity of the shear walls with opening.

Position Control of a Stewart Platform Using Approximate Inverse Dynamics (근사역동역학을 이용한 스튜어트플랫폼의 위치제어)

  • Lee, Se-Han;Song, Jae-Bok;Park, Woo-Chun;Hong, Dae-Hui
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.993-1000
    • /
    • 2001
  • Configuration-dependent nonlinear coefficient matrices in the dynamic equation of robot manipulator impose computa- tional burden in real-time implementation of tracking control based on the inverse dynamics controller. However, parallel manipulators such as Stewart platform have relatively small workspace compared to serial manipulators. Based on the characteristics of small motion range. nonlinear coefficient matrices can be approxiamted to constant ones. The modeling errors caused by such approximation are compensated for by H-infinity controller that treats the modeling errors disturbance. The proposed inverse dynamics controller with approximate dynamics combined with H-infinity control shows good tracking performance even for fast tracking control in which computation of full inverse dynamics is not easy to implement.

  • PDF

Indirect Adaptive Sliding Mode Control Using Parameter Estimation of Hopfield Network (Hopfield 신경망의 파라미터 추정을 이용한 간접 적응 가변구조제어)

  • Ham, Jae-Hoon;Park, Tae-Geon;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1037-1041
    • /
    • 1996
  • Input-output linearization technique in nonlinear control does not guarantee the robustness in the presence of parameter uncertainty or unmodeled dynamics, etc. However, it has been used as an important preliminary step in achieving additional control objectives, for instance, robustness to parameter uncertainty and disturbance attenuation. An indirect adaptive control scheme based on input-output linearization is proposed in this paper. The scheme consists of a Hopfield network for process parameter identification and an adaptive sliding mode controller based on input-output linearization, which steers the system response into a desired configuration. A numerical example is presented for the trajectory tracking of uncertain nonlinear dynamic systems with slowly time-varying parameters.

  • PDF

Control method for DC Motor based on Neural Networks (인공신경회로망에 기초한 직류모터제어)

  • Park, Jin-Hyun;Choi, Young-Kiu;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.248-250
    • /
    • 1993
  • In this paper, we assume that the dynamics of DC motor and nonlinear load are unknown. We train the inverse dynamic model of DC motor and nonlinear load using the neural network and construct speed control system based on the traind dynamic model and current control mode. Speed prediction scheme using neural network is also proposed the alleviate the time delay effect caused by the computation time of neural network. Simulation results show good performances of the control system. Finally, hardware configuration of the control system is outlined.

  • PDF

Topology optimization of steel plate shear walls in the moment frames

  • Bagherinejad, Mohammad Hadi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.771-783
    • /
    • 2018
  • In this paper, topology optimization (TO) is applied to find a new configuration for the perforated steel plate shear wall (PSPSW) based on the maximization of reaction forces as the objective function. An infill steel plate is introduced based on an experimental model for TO. The TO is conducted using the sensitivity analysis, the method of moving asymptotes and SIMP method. TO is done using a nonlinear analysis (geometry and material) considering the buckling. The final area of the optimized plate is equal to 50% of the infill plate. Three plate thicknesses and three length-to-height ratios are defined and their effects are investigated in the TO. It indicates the plate thickness has no significant impact on the optimization results. The nonlinear behavior of optimized plates under cyclic loading is studied and the strength, energy and fracture tendency of them are investigated. Also, four steel plates including infill plate, a plate with a central circle and two types of the multi-circle plate are introduced with equal plate volume for comparing with the results of the optimized plate.

Active TMD systematic design of fuzzy control and the application in high-rise buildings

  • Chen, Z.Y.;Jiang, Rong;Wang, Ruei-Yuan;Chen, Timothy
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.577-585
    • /
    • 2021
  • In this research, a neural network (NN) method was developed, which combines H-infinity and fuzzy control for the purpose of stabilization and stability analysis of nonlinear systems. The H-infinity criterion is derived from the Lyapunov fuzzy method, and it is defined as a fuzzy combination of quadratic Lyapunov functions. Based on the stability criterion, the nonlinear system is guaranteed to be stable, so it is transformed to be a linear matrix inequality (LMI) problem. Since the demo active vibration control system to the tuning of the algorithm sequence developed a controller in a manner, it could effectively improve the control performance, by reducing the wind's excitation configuration in response to increase in the cost efficiency, and the control actuator.

Nonlinear static behavior of three-layer annular plates reinforced with nanoparticles

  • Liu, Shouhua;Yu, Jikun;Ali, H. Elhosiny;Al-Masoudy, Murtadha M.
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.427-435
    • /
    • 2022
  • Static stability behaviors of annular sandwich plates constructed from two layers of particle-reinforced nanocomposites have been investigated in the present article. The type of nanoscale particles has been considered to be graphene oxide powders (GOPs). The particles are assumed to have uniform and graded dispersions inside the matrix and the material properties have been defined according to Halpin-Tsai micromechanical model. The core layer is assumed to have honeycomb configuration. Annular plate has been formulated according to thin shell assumptions considering geometrical nonlinearities. After solving the governing equations via Galerkin's technique, it is showed that the post-buckling curves of annular sandwich plates rely on the core wall thickness, amount of GOP particles, sector radius, and thickness of layers.

Modeling Optimal Lane Configuration at the Toll Plaza by Nonlinear Integer Programming Incorporated with an M/G/1 Queueing Process

  • Kim, Seong-Moon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.403-406
    • /
    • 2006
  • This paper provides an M/G/1 queueing model for the operations management problem at the toll plaza. This queueing process is incorporated with two non-linear integer programming models - the user cost minimization model during the peak times and the operating cost minimization model during the off-peak hours.

  • PDF

Wilshire Grand: Outrigger Designs and Details for a Highly Seismic Site

  • Joseph, Leonard M.;Gulec, C. Kerem;Schwaiger, Justin M.
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • The 1100 foot [335 m] tall Wilshire Grand Center tower under construction in Los Angeles illustrates many key outrigger issues. The tower has a long, narrow floor plan and slender central core. Outrigger braces at three groups of levels in the tower help provide for occupant comfort during windy conditions as well as safety during earthquakes. Because outrigger systems are outside the scope of prescriptive code provisions, Performance Based Design (PBD) using Nonlinear Response History Analysis (NRHA) demonstrated acceptability to the Los Angeles building department and its peer review panel. Buckling Restrained Brace (BRB) diagonals are used at all outrigger levels to provide stable cyclic nonlinear behavior and to limit forces generated at columns, connections and core walls. Each diagonal at the lowest set of outriggers includes four individual BRBs to provide exceptional capacities. The middle outriggers have an unusual 'X-braced Vierendeel' configuration to provide clear hotel corridors. The top outriggers are pre-loaded by jacks to address long-term differential shortening between the concrete core and concrete-filled steel perimeter box columns. The outrigger connection details are complex in order to handle large forces and deformations, but were developed with contractor input to enable practical construction.