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Abstract

This paper provides an M/G/1 queueing model for
the operations management problem at the toll plaza.
This queueing process is incorporated with two nori-
linear integer programming models - the user cost
minimization model during the peak times and the
operating cost minimization model during the off-
peak hours.

1 INTRODUCTION

Ever increasing traffic volume and corresponding con-
gestion necessitate efficient design and management
of toll plaza operations. Optimal lane configura-
tion against the non-stationary and stochastic traf-
fic volume can help prevent long waits during the
peak times at the toll plaza. Most of queueing stud-
ies, which are considered to best describe the traffic
situations at the toll plaza, have not been applied
to toll plaza operations. Some previous studies use
M/M/1 or M/M/s queueing systems to model the
toll plaza problem, but the assumption on the expo-
nential service time is unrealistic in practice. Sev-
eral studies employ heuristics or simulation studies
to find good sub-optimal solutions. This paper is dif-
ferentiated from the previous works by providing an
M/G/1 queueing model, which is realistic and still
mathematically tractable, and it is then integrated
with nonlinear integer programming models to deter-
mine optimal lane configurations over time at the toll
plaza.

The rest of the paper is organized as follows. An
M/G/1 queueing model is presented in Section 2.
The queueing model is then incorporated with two
nonlinear integer programming models in Section 3
- the user cost minimization model during the peak
times and the operating cost minimization model dur-
ing the off-peak hours. Lastly, concluding remarks
and future research directions are provided in Sec-
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tion 4.

2 An M/G/1 Queueing Model

The author provides in this section framework of the
toll plaza configuration problem which can be best
explained by the queueing theory. The main compo-
nents of the queueing model are arrival and service
processes, number of servers, queue discipline, and so
on. We begin this section with the following variables
and parameters which are used in the model.

2.1 Notation
e N: total number of lanes at the toll plaza,
¢ K: number of lane types,

e n;: planned capacity for lane type 4, that is, the

number of type 7 lanes to open, where 2;1.{—_1 n; <
N,

e l;: lower bound for the number of type 4 lanes to
open,

e u;: upper bound for the number of type i lanes
to open,

e \: mean arrival rate for service at the toll plaza,

e )\;: mean arrival rate for lane type i, where
K
27;:1 Ai = )\)

e p;: mean percentage of drivers using lane type i,
where p; = \; /),

e (1 mean service rate for lane type 1,

e o;: standard deviation of service time for lane
type ¢,

e L;: mean number of vehicles waiting in the queue
at a type ¢ lane,
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e W;: mean waiting time in the queue at a type %
lane,

e W: total mean waiting time in the queue for all
the arrivals at the toll plaza,

e s;: the service standard for the mean waiting
time for lane type 1,

2.2 Lane Types

There are many kinds of lane types in different cities,
states and countries. Lanes at the toll plaza are clas-
sified in (1) as follows: 1) dedicated manual toll lanes
where transactions are handled by a toll collector, 2)
dedicated automatic coin (or token) machine lanes
(hereafter referred to as ACM lanes, 3) dedicated
electronic toll collection (ETC) lanes with automatic
vehicle identification technology, and 4) any mix of
the above mentioned dedicated lane types, such as
mixed ACM and ETC lanes, mixed ACM and man-
ual lanes, and mixed ETC and manual lanes. These
classification can be divided further into barrier and
no-barrier toll lanes. Manual lanes are further classi-
fied in (2) depending on whether they provide service
to semi-trucks or not.

Manual lanes need toll collectors who can issue
change or receipt. Tolls are paid manually in ACM
lanes, but ACM collects the toll instead of a toll col-
lector. Drivers have to stop to pay the toll at the
plaza in both manual and ACM lanes. Recently, there
are some other type of toll lanes where credit card can
be used with or without receipt. The average speed
through the conventional lane types is the least be-
cause of the stop and pay system and, hence, queues
extend up to long distances during peak hours.

These days ETC lanes are getting popularity more
and more to many toll users who do not want to expe-
rience long waits at the toll plaza. ETC lanes utilize
a radio frequency transponders and external sensors
to collect toll. The external sensor decides whether
the transponder attached to the vehicle are valid or
not, then the class of the vehicle is identified and the
toll is electronically debited from the driver’s account.
Transponders are like electronic tags attached to the
vehicles which assess the toll by identifying the class
of the vehicle. This ETC system has different names,
for example, E — Z PASS,HIGH PASS, etc., in
different cities, states and countries.

2.3 Arrival Process

For real queueing systems, the probability distribu-
tion of interarrival times can take on almost any
form. But, to formulate a queueing theory model
as a representation of the real system, we need to

make some assumptions on the probability distribu-
tion which should be sufficiently realistic while, at the
same time, being mathematically tractable.

The mathematics of queueing theory are most
manageable if arrivals exhibit Poisson processes with
exponential interarrival times. Arrivals may be
counted from multiple toll booths for each lane type.
From this observation, we can compute mean inter-
arrival times. Statistical test recommends that the
arrivals at the toll plaza follow the standard assump-
tion of a Poisson process with exponential interarrival
times. This is well supported in the literature (3-8).

Let A denote the mean total arrival rate for ser-
vice at the toll plaza, and A\; mean arrival rate for
lane type ¢, ¢ = 1,2,---, K, where Zfil A= A
Analysis of the arrival data also suggests that arrival
percentage per lane type is uniformly distributed over
all lanes (3). Consequently, the mean arrival rate per
lane is determined by dividing the mean arrival rate
per lane type by the number of lanes utilized for that
type of collection, and we have %1

2.4 Service Process

Service time distributions may also be obtained em-
pirically in the same manner as described earlier. The
mean service time for each payment type is com-
puted through repeated observation at the plaza dur-
ing peak load when no slack exists. Service time does
not include waiting time of the vehicle in the queue.

If service times are exponentially distributed,
the mathematics of the queueing theory are most
tractable. However, they do not, in reality, follow
the nice exponential distributions. An exponential
service time distribution is used in {8) where the vari-

- ance of the service time is greater than the real one,

and upper bounds for mean waiting time are com-
puted. Instead of using an exponential distribution,
we assume in this study that service times have gen-
eral distributions by measuring the mean service rate,
1, and the standard deviation, o, for lane type . It
is reported in (9) from their collection of real data
that the mean service rates per hour for ETC, ACM,
and manual lanes were 1708, 503, and 376, respec-
tively. Although these numbers are toll plaza specific,
it is generally understood that mean service rate for
the ETC lane is the highest and for the manual lane
is the lowest. Generally again, the variance for the
ETC lane is the smallest and for the manual lane is
the largest.

2.5 Queue Length and Waiting time

With the assumption of the general service time
distribution and the Poisson arrival process where
the average arrival rate per lane type is uniformly

-404 -



distributed across each lane, we can formulate an
M/G /1 queueing process model. If the mean arrival
rates, mean service times and standard deviations
are provided, mean queue length and mean waiting
times in the queue can be obtained. Let L; denote
the mean queue length, i.e., mean number of vehicles
waiting in the queue for a type ¢ lane. Then, by using
the Pollaczek — K hintchine formula for the M/G/1
queueing system {10), we have

_ A(ulo? 1)
2n2pa(p; — X

Using the above formula, the queue length in each of
the toll lanes is calculated.

Since service rate is different for each lane type,
the mean queue length may not be a good measure
of criteria for performance comparison. Mean wait-
ing time in the queue, not the mean queue length,
impacts on the perception of service quality at the
toll plaza to the motorists. For example, while the
queue in the ACM lane is longer than the one for the
manual service, the mean waiting time for the ACM
lane may be shorter due to a higher service rate with
a smaller variance of the service.

Mean waiting time of the vehicle in the queue for
lane type i can be obtained by the Little’s Law (10)

(2.1)

hz‘Mma+D 22

W; =
2n4 5 (s — ;f)

A
n;

and the total waiting time of all drivers at the toll
plaza is

o 1)

W = Z MW, = Z :u'z Uz

(2.3)
=1 2“2#1 Hi — _L)

3 NONLINEAR INTEGER
PROGRAMMING MOD-
ELS

From discussion with the toll plaza officials we find
that the goals of operating a toll plaza may not be the
same between peak and off-peak times. During the
peak hours, for example, the objective may be mini-
mizing the total (cost of) wait time with full capacity
operation due to high traffic volume. That is, a de-
crease in user cost.related to wait time as opposed
to operating costs is preferred during the morning
and evening rush hours. On the other hand, during
the off-peak hours the traffic volume may not be that

high and service standard may be well satisfied even
with partial capacity operation. In other words, as
long as the service standard is met, full capacity op-
erations may not be necessary and the objective is
simply minimizing the operating costs.

3.1 The User Cost Minimization

Model

The user cost is directly related with the mean wait
time in the queue. In order to find the optimal
lane configuration (nf,n3,-+-,n}) during the peak
times at the toll plaza given several constraints, we
develop a following nonlinear integer programming
model minimizing the total waiting time.

K
Minimize W = Z Wi

(3.1)
i=1
Subject to n; > I; for all ¢ (3.2)
n; < u; for all ¢ (3.3)
il < p; for all i (34)
T
K
d =N (3.5)
i=1
mry
_ ’\2(/‘1‘71 +i) (36)
2nip(pi — 54)
= integer for all i. (3.7)

There are several constraints to achieve this goal
at the toll plaza. Lanes to open for each collection
type may have some lower and upper bounds, i.e.,
l; and u;. For example, at least one lane should be
open for each lane type to provide service for all types
of drivers, and the number of ACM and ETC lanes
available is limited by the number of lanes equipped
with ACM and ETC lane machines. Next, the ar-
rival rate to each lane should be less than the service
rate for the lane. Otherwise, queues will grow indef-
initely to explode and the system will be unstable.
Hence, in order to have a stable steady-state queue-
ing system, we need the inequality (3.4). In addition,
sum of open lanes for all lane types should be the
total available lanes, i.e., full capacity operation dur-
ing the peak times. Obviously, the number of lanes
to open should be integer. Our objective is to find
the optimal lane configuration-(n},n3, .- ,nk) , ie.,
the number of lanes to open for different types in or-
der to minimize the total wait times for all drivers.
The optimal solution may be obtained by using any
of commercial optimization packages.
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3.2 The Operating Cost Minimization
Model

The operating cost is directly related with the num-
ber of lanes open at the toll plaza. During the off-
peak hours it may be desired to keep the minimum
number of lanes to open for each lane type as long
as the service standard is met in order to save oper-
ating cost. We develop a following nonlinear integer
programming model to achieve this goal:

K
Minimize Zn,‘; (3.8).
i=1
Subject to n; > ; for all ¢ (3.9
n; < u; for all 7 (3.10)
X < p; for all ¢ (3.11)
4
K
> m<N (3.12)
i=1
W; < s; for all 1 (3.13)
= _.Mgi;)_ (3.14)
2nqpi(ps — 71)
n; = integer for all . (3.15)

Some of the constraints are modified and newly
added from the previous model. First, inequality
(3.12) implies that not all the lanes need to be open.
In addition, inequality (3.13) states that average
waiting time for each lane should be less than or
equal to the predetermined service standard. Finally,
the objective function (3.8) minimizes the number of
lanes to open to keep the lowest operating costs.

4 CONCLUSIONS

This paper presented an M/G/1 queueing model,
which is more realistic than a commonly-used
M/M/1 model with a Poisson arrival process and a
general service time distribution. We incorporated
the M/G/1 queueing process with the two nonlinear
integer programming models - the user cost minimiza-~
tion model during the peak times and the operating
cost minimization model during the off-peak hours.
Although we obtain the optimal lane configuration
based on the historical average traffic volume data,
real-time traffic volume or real-time proportion of toll
users may be considerably different from the histor-
ical average values, contingent on traffic accidents,
weather conditions, sports events, and so on. When
we have these unexpected changes of the total traffic
volume or proportion of toll users, how to dynami-
cally re-configure the toll plaza to maintain not long

wait time is another future research direction as in-
troduced in (11) with decision support system. In
addition, finding the optimal work force scheduling
to minimize operating cost in the manual lane based
on real-time traffic observation may be an interesting
but challenging research topic.
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