• Title/Summary/Keyword: Nonlinear configuration

Search Result 284, Processing Time 0.026 seconds

Lead bromide crystal growth from the melt and characterization: the effects of nonlinear thermal boundary conditions on convection during physical vapor crystal growth of mercurous bromide

  • Geug-Tae Kim;Moo Hyun Kwon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.4
    • /
    • pp.160-168
    • /
    • 2004
  • We investigate the effects of solutal convection on the crystal growth rate in a horizontal configuration for diffusive-convection conditions and purely diffusion conditions achievable in a low gravity environment for a nonlinear thermal gradient. It is concluded that the solutally-driven convection due to the disparity in the molecular weights of the component A $(Hg_2Br_2)$ and B (CO) is stronger than thermally-driven convection for both the nonlinear and the linear thermal profiles, corresponding to $Gr_t= 8.5{\times}10^3,\; Gr_s = 1.05{\times}10^5$. For both solutal and thermal convection processes, the growth rates for the linear thermal profile (conducting walls) are greater than for the nonlinear case. With the temperature humps, there are found to be observed in undersaturation for diffusive-convection processes ranging from $D_{AB}$ = 0.087 to 0.87. For the vertical configurations, the diffusion mode is so much dominated that the growth rate and interfacial distribution is nearly regardless of the gravitational accelerations. Also, the diffusion mode is predominant over the convection for the gravity levels less than 0.1 $g_0$ for the horizontally oriented configuration.

Finite strain nonlinear longitudinal vibration of nanorods

  • Eren, Mehmet;Aydogdu, Metin
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.323-337
    • /
    • 2018
  • The nonlinear free vibration of a nanorod subjected to finite strain is investigated. The governing equation of motion in material configuration in terms of displacement is determined. By means of Galerkin method, the Fourier series solutions satisfying some typical boundary conditions are determined. The amplitude-frequency relationship and interaction between the modes are studied. The effects of nonlocal elasticity are shown for different length of nanotubes and nonlocal parameter. The results show that nonlocal effects lead to additional internal modal interaction for nanorod vibrations.

Pseudo-symmetrically Dispersion-Managed Optical Transmission Links with Midway OPC for Compensating for Distorted WDM Signals

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.228-234
    • /
    • 2015
  • The system performance improvement in dispersion managed (DM) links combined with optical phase conjugator (OPC) for compensating for optical signal distortion due to group velocity dispersion and nonlinear fiber effects has been reported. However, in DM link combined OPC, the equalities of the lengths of single-mode fibers (SMFs), the length of dispersion compensating fibers (DCFs), the dispersion coefficient of DCF, and the residual dispersion per span (RDPS) with respect to an OPC restrict a flexible link configuration. Thus, in this paper, we propose a flexible optical link configuration with inequalities of link parameters, the so-called "pseudo-symmetric configuration." Simulation results show that, in the restricted RDPS range of 450 ps/nm to 800 ps/nm, the improvement in the system performance of the proposed pseudo-symmetrically configured optical links is better than that of the asymmetrically configured optical links. Consequently, we confirmed that the proposed pseudo-symmetric configuration is effective and useful for implementing a reconfigurable long-haul wavelength-division multiplexing (WDM) network.

Nonlinear finite element model updating with a decentralized approach

  • Ni, P.H.;Ye, X.W.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.683-692
    • /
    • 2019
  • Traditional damage detection methods for nonlinear structures are often based on simplified models, such as the mass-spring-damper and shear-building models, which are insufficient for predicting the vibration responses of a real structure. Conventional global nonlinear finite element model updating methods are computationally intensive and time consuming. Thus, they cannot be applied to practical structures. A decentralized approach for identifying the nonlinear material parameters is proposed in this study. With this technique, a structure is divided into several small zones on the basis of its structural configuration. The unknown material parameters and measured vibration responses are then divided into several subsets accordingly. The structural parameters of each subset are then updated using the vibration responses of the subset with the Newton-successive-over-relaxation (SOR) method. A reinforced concrete and steel frame structure subjected to earthquake loading is used to verify the effectiveness and accuracy of the proposed method. The parameters in the material constitutive model, such as compressive strength, initial tangent stiffness and yielding stress, are identified accurately and efficiently compared with the global nonlinear model updating approach.

Conceptual configuration and seismic performance of high-rise steel braced frame

  • Qiao, Shengfang;Han, Xiaolei;Zhou, Kemin;Li, Weichen
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.173-186
    • /
    • 2017
  • Conceptual configuration and seismic performance of high-rise steel frame-brace structure are studied. First, the topology optimization problem of minimum volume based on truss-like material model under earthquake action is presented, which is solved by full-stress method. Further, conceptual configurations of 20-storey and 40-storey steel frame-brace structure are formed. Next, the 40-storeystructure model is developed in Opensees. Two common configurations are utilized for comparison. Last, seismic performance of 40-storey structure is derived using nonlinear static analysis and nonlinear dynamic analysis. Results indicate that structural lateral stiffness and maximum roof displacement can be improved using brace. Meanwhile seismic damage can also be decreased. Moreover, frame-brace structure using topology optimization is most favorable to enhance lateral stiffness and mitigate seismic damage. Thus, topology optimization is an available way to form initial conceptual configuration in high-rise steel frame-brace structure.

Direct Adaptive Fuzzy Control with Less Restrictions on the Control Gain

  • Phan, Phi Anh;Gale, Timothy J.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.621-629
    • /
    • 2007
  • In the adaptive fuzzy control field for affine nonlinear systems, there are two basic configurations: direct and indirect. It is well known that the direct configuration needs more restrictions on the control gain than the indirect configuration. In general, these restrictions are difficult to check in practice where mathematical models of plant are not available. In this paper, using a simple extension of the universal approximation theorem, we show that the only required constraint on the control gain is that its sign is known. The Lyapunov synthesis approach is used to guarantee the stability and convergence of the closed loop system. Finally, examples of an inverted pendulum and a magnet levitation system demonstrate the theoretical results.

Advanced aerostatic stability analysis of suspension bridges

  • Xiao, Ru-Cheng;Cheng, Jin
    • Wind and Structures
    • /
    • v.7 no.1
    • /
    • pp.55-70
    • /
    • 2004
  • Aerostatic instability of a suspension bridge may suddenly appears when the deformed shape of the structure produces an increase in the value of the three components of displacement-dependent wind loads distributed in the structure. This paper investigates the aerostatic stability of suspension bridges using an advanced nonlinear method based on the concept of limit point instability. Particular attention is devoted to aerostatic stability analysis of symmetrical suspension bridges. A long-span symmetrical suspension bridge (Hu Men Bridge) with a main span of 888 m is chosen for analysis. It is found that the initial configuration (symmetry or asymmetry) may affect the instability configuration of structure. A finite element software for the nonlinear aerostatic stability analysis of cable-supported bridges (NASAB) is presented and discussed. The aerostatic failure mechanism of suspension bridges is also explained by tracing aerostatic instability path.

Nonlinear vibration analysis of an electrostatically excited micro cantilever beam coated by viscoelastic layer with the aim of finding the modified configuration

  • Poloei, E.;Zamanian, M.;Hosseini, S.A.A.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.193-207
    • /
    • 2017
  • In this study, the vibration of an electrostatically actuated micro cantilever beam is analyzed in which a viscoelastic layer covers a portion of the micro beam length. This proposed model is considered as the main element of mass and pollutant micro sensors. The nonlinear motion equation is extracted by means of Hamilton principle, considering nonlinear shortening effect for Euler-Bernoulli beam. The non-linear effects of electrostatic excitation, geometry and inertia have been taken into account. The viscoelastic model is assumed as Kelvin-Voigt model. The motion equation is discretized by Galerkin approach. The linear free vibration mode shapes of non-uniform micro beam i.e. the linear mode shape of the system by considering the geometric and inertia effects of viscoelastic layer, have been employed as comparison function in the process of the motion equation discretization. The discretized equation of motion is solved by the use of multiple scale method of perturbation theory and the results are compared with the results of numerical Runge-Kutta approach. The frequency response variations for different lengths and thicknesses of the viscoelastic layer have been founded. The results indicate that if a constant volume of viscoelastic layer is to be deposited on the micro beam for mass or gas sensor applications, then a modified configuration may be found by using the analysis of this paper.

Automotive Body Design (차량 차체 설계)

  • Lee, Jeong-Ick;Kim, Byoun-Gon;Chung, Tae-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.10-22
    • /
    • 2008
  • In an automotive body structure, a design configuration that fulfills structural requirements such as deflection, stiffness and strength is necessary for structural design and is composed of various components. The integrated design is used to obtain a minimum weight structure with optimal or feasible performance based on conflicting constraints and boundaries. The mechanical design must begin with the definition of one or more concepts for structure and specification requirements in a given application environment. Structural optimization is then introduced as an integral part of the product design and used to yield a superior design to the conventional linear one. Although finite element analysis has been firmly established and extensively used in the past, geometric and material nonlinear analyses have also received considerable attention over the past decades. Also, nonlinear analysis may be useful in the area of structural designs where instability phenomena can include critical design criteria such as plastic strain and residual deformation. This proposed approach can be used for complicated structural analysis for an integrated design process with the nonlinear feasible local flexibilities between system and subsystems.

Free Surface Tracking for the Accurate Time Response Analysis of Nonlinear Liquid Sloshing

  • Cho Jin-Rae;Lee Hong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1517-1525
    • /
    • 2005
  • Liquid sloshing displays the highly nonlinear free surface fluctuation when either the external excitation is of large amplitude or its frequency approaches natural sloshing frequencies. Naturally, the accurate tracking of time-varying free surface configuration becomes a key task for the reliable prediction of the sloshing time-history response. However, the numerical instability and dissipation may occur in the nonlinear sloshing analysis, particularly in the long-time beating simulation, when two simulation parameters, the relative time-increment parameter a and the fluid mesh pattern, are not elaborately chosen. This paper intends to examine the effects of these two parameters on the potential-based nonlinear finite element method introduced for the large amplitude sloshing flow.