• Title/Summary/Keyword: Nonlinear amplifiers

Search Result 63, Processing Time 0.024 seconds

Harmonic Signal Linearization of Nonlinear Power Amplifier Using Digital Predistortion for Multiband Wireless Transmitter (다중 대역 송신을 위한 디지털 사전 왜곡 기법을 이용한 비선형 전력 증폭기의 고조파 신호 선형화)

  • Oh, Kyung-Tae;Ku, Hyun-Chul;Kim, Dong-Su;Hahn, Cheol-Koo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1339-1349
    • /
    • 2008
  • In this paper, a nonlinear relationship between an input complex envelope and an output complex envelope of m-th harmonic zone is theoretically analyzed, and AM/$AM_m$ and AM/$PM_m$ are defined. A scheme to extract these characteristics from measured in-phase and quadrature-phase data is suggested. The proposed analysis is verified with a fundamental-fundamental and fundamental-third harmonic measurements for a InGaP power amplifier(PA). Based on the harmonic-band nonlinear analysis and extraction scheme, a new technique to send a signal in m-th harmonic band with a harmonic signal Linearization Digital Predistortion(DPD) scheme is presented. A numerical analysis and a Look-Up Table(LUT) based DPD algorithms to linearize output signal on m-th harmonic zone are developed. For a 16- and a 64-QAM input signals, a DPD for third harmonic signal linearization is implemented, and output spectrum and signal constellation are measured. The wholly distorted signals are linearized, and thus the measured Error Vector Magnitudes (EVM) are 6.4 % and 6.5 % respectively. The results show that a proposed scheme linearizes a nonlinearly distorted harmonic band signals. The proposed nonlinear analysis and predistortion scheme can be applied to multiband transmitter in next generation software defined radio(SDR)/cognitive radio(CR) wireless system.

Analysis and Compensation of RF Path Imbalance in LINC System (LINC 전력 증폭기의 경로 오차 영향 분석 및 보상에 관한 연구)

  • Lim, Jong-Gyun;Kang, Won-Shil;Ku, Hyun-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.8
    • /
    • pp.857-864
    • /
    • 2010
  • In this paper, we analyse the effect of the path imbalances(gain and phase mismatches) in LINC(LInear amplification with Nonlinear Component) system, and propose a simple scheme using LUTs(Look Up Table) to compensate the path imbalances. The EVM(Error Vector Magnitude) and ACPR(Adjacent Channel Power Ratio) of the LINC system are degraded significantly by the path imbalances because it adopts an outphasing technique. The EVM and ACPR are theoretically extracted for two variables(gain and phase mismatch factors) and 2-D LUTs for those are generated based on the analysis. The efficient and simple compensation scheme for the path imbalances is proposed using the 2-D LUTs. A LINC system with the suggested compensation scheme is implemented, and the proposed method is verified with an experiment. A 16-QAM signal with 1.5 MHz bandwidth is used. Before the compensation, the path gain ratio was 95 % and phase error was $19.33^{\circ}$. The proposed scheme adjusts those values with 99 % and $0.5^{\circ}$, and improves ACPR about 18.1 dB.

Compensation of the Non-linearity of the Audio Power Amplifier Converged with Digital Signal Processing Technic (디지털 신호 처리 기술을 융합한 음향 전력 증폭기의 비선형 보상)

  • Eun, Changsoo;Lee, Yu-chil
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.3
    • /
    • pp.77-85
    • /
    • 2016
  • We propose a digital signal processing technic that can compensate the non-linearity inherent in audio amplifiers, and present the result of the simulation. The inherent non-linearity of the audio power amplifier arising from analog devices is compensated via a digital signal processing technic consisting of indirect learning architecture and an adaptive filter. The simulation results show that the compensator can be realized using a third-order polynomial and compensates odd-order non-linearity efficiently. The even-oder non-linearity is mainly due to the dc offset at the output, which is difficult to eliminate with the proposed method. Care must be taken in designing the bias circuit to avoid the DC offset at the output. The proposed technic has significance in that digital signal processing technic can compensate for the impairment that is an inherent characteristic of an analog system.

A Research on a Cross Post-Distortion Balanced Linear Power Amplifier for Base-Station (기지국용 Cross Post-Distortion 평형 선형 전력 증폭기에 관한 연구)

  • Choi, Heung-Jae;Jeong, Hee-Young;Jeong, Yong-Chae;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1262-1270
    • /
    • 2007
  • In this paper, we propose a new distortion cancellation mechanism for a balanced power amplifier structure using the carrier cancellation loop of a feedforward and post-distortion technique. The proposed cross post-distortion balanced linear amplifier can reduce nonlinear components as much as the conventional feedforward amplifier through the output dynamic range and broad bandwidth. Also the proposed system provides higher efficiency than the feedforward. The capacities of power amplifier and error power amplifier in the proposed system are analyzed and compared with those of feedforward amplifier. Also the operation mechanisms of the three kind loops are explained. The proposed cross post-distortion balanced linear power amplifier is implemented at the IMT-2000($f_0=2.14\;GHz$) band. With the commercial high power amplifiers of total power of 240 W peak envelope power fer base-station application, the adjacent channel leakage ratio measurement with wideband code division multiple access 4FA signal shows 18.6 dB improvement at an average output power of 40 dBm. The efficiency of fabricated amplifier Improves about 2 % than the conventional feedforward amplifier.

Digital Pre-Distortion Technique Using Repeated Usage of Feedback Samples (피드백 샘플 반복 활용을 이용한 다지털 전치 왜곡 방안)

  • Lee, Kwang-Pyo;Hong, Soon-Il;Jeong, Eui-Rim
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.673-676
    • /
    • 2015
  • Digital Pre-Distortion (DPD) is a linearization technique for nonlinear power amplifiers (PAs) by implementing inverse function of the PA at baseband digital stage. To obtain proper DPD parameters, a feedback path is required to convert the PA output to a baseband signal, and a memory is also needed to store the feedback signals. DPD parameters are usually found by an adaptive algorithm from the feedback samples. However, for the adaptive algorithm to converge to a reliable solution, long feedback samples are required, which increases convergence time and hardware complexity. In this paper, we propose a DPD technique that requires relatively short feedback samples. From the observation that the convergence time of the adaptive algorithm highly depends on the initial condition, this paper iteratively utilizes the feedback samples while keeping and using the converged DPD parameters at the former iteration as the initial condition at the current iteration. Computer simulation results show that the proposed method performs better than the conventional technique while the former requires much shorter feedback samples than the latter.

  • PDF

A Robust Digital Pre-Distortion Technique in Saturation Region for Non-linear Power Amplifier (비선형 전력 증폭기의 포화영역에서 강인한 디지털 전치왜곡 기법)

  • Hong, Soon-Il;Jeong, Eui-Rim
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.681-684
    • /
    • 2015
  • Power amplifier is an essential component for transmitting signals to a remote receiver in wireless communication systems. Power amplifier is a non-linear device in general, and the nonlinear distortion becomes severer as the output power increases. The nonlinearity results in spectral regrowth, which leads to adjacent channel interference, and decreases the transmit signal quality. To linearize power amplifiers, many techniques have been developed so far. Among the techniques, digital pre-distortion is known as the most cost and performance effective technique. However, the linearization performance falls down abruptly when the power amplifier operates in its saturation region. This is because of the severe nonlinearity. To relieve this problem, this paper proposes a new adaptive predistortion technique. The proposed technique controls the adaptive algorithm based on the power amplifier input level. Specifically, for small signals, the adaptive predistortion algorithm works normally. On the contrary, for large signals, the adaptive algorithm stops until small signals occur again. By doing this, wrong coefficient update by severe nonlinearity can be avoided. Computer simulation results show that the proposed method can improve the linearization performance compared with the conventional digital predistortion algorithms.

  • PDF

A Study on the Modeling of a High-Voltage IGBT for SPICE Simulations (고전압 IGBT SPICE 시뮬레이션을 위한 모델 연구)

  • Choi, Yoon-Chul;Ko, Woong-Joon;Kwon, Kee-Won;Chun, Jung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.194-200
    • /
    • 2012
  • In this paper, we proposed a SPICE model of high-voltage insulated gate bipolar transistor(IGBT). The proposed model consists of two sub-devices, a MOSFET and a BJT. Basic I-V characteristics and their temperature dependency were realized by adjusting various parameters of the MOSFET and the BJT. To model nonlinear parasitic capacitances such as a reverse-transfer capacitance, multiple junction diodes, ideal voltage and current amplifiers, a voltage-controlled resistor, and passive devices were added in the model. The accuracy of the proposed model was verified by comparing the simulation results with the experimental results of a 1200V trench gate IGBT.

Design of a Dual-band Class-E Power Amplifier using Metamaterial CRLH Transmission Lines (Metamaterial CRLH 전송선로를 이용한 이중대역 Class-E 전력증폭기 설계)

  • Lim, Sung-Gyu;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.9
    • /
    • pp.54-58
    • /
    • 2011
  • In this paper a dual-band Class-E power amplifier using Composite Right-/Left-Handed transmission lines and PIN diode is proposed. Dual-band operation is achieved by the frequency offset and nonlinear phase slope of CRLH TL for the matching network of power amplifiers. The proposed power amplifier has been realized by using in the input and the output matching network for high power added efficiency. PIN diode has been used to obtain the dual-band of power amplifier. The measured results show that output powers of 42.17 dBm and 41.43 dBm were obtained at 800 MHz and 1900 MHz, respectively. At this frequency, we have obtained the power-added efficiency(PAE) of 67.84 % and 65.31 % in two operation frequencies, respectively.

Predistorter Design for a Memory-less Nonlinear High Power Amplifier Using the $rho$th-Order Inverse Method for OFDM Systems ($rho$차 역필터 기법을 이용한 OFDM 시스템의 메모리가 없는 비선형 고전력 증폭기의 전치 보상기 설계)

  • Lim, Sun-Min;Eun, Chang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.191-199
    • /
    • 2006
  • In this paper, we propose a method to implement a predistorter of the $rho$-th order inverse filter structure to prevent signal distortion and spectral re-growth due to the high PAPR (peak-to-average ratio) of the OFDM signals and the non-linearity of high-power amplifiers. We model the memory-less non-linearity of the high-power amplifier with a polynomial model and utilize the inverse of the model, the $rho$-th order inverse filter, for the predistorter. Once the non-linearity is modeled with a polynomial, since we can determine the $rho$-th order inverse filter only with the coefficients of the polynomial, large memory is not required. To update the coefficients of the non-linear high-power amplifier model, we can use LMS or RLS algorithms. The convergence speed is high since the number of coefficients is small, and the computation is simple since manipulation of complex numbers is not necessary.

A 20 GHz Band 1 Watt MMIC Power Amplifier (20 GHz대 1 Watt 고출력증폭 MMIC의 설계 및 제작)

  • 임종식;김종욱;강성춘;남상욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.7
    • /
    • pp.1044-1052
    • /
    • 1999
  • A 2-stage 1 watt MMIC(Monolithic Microwave Integrated Circuits) HPA(High Power Amplifiers) at 20 GHz band has been designed and fabricated. The $0.15\mu\textrm{m}$ with the width of $400\mu\textrm{m}$for single device pHEMT technology was used for the fabrication of this MMIC HPA. Due to the series feedback technique from source to ground, bias circuits and stabilization circuits on the main microstrip line, the stability factors(Ks) are more than one at full frequency. The independent operation for each stage and excellent S11, S22 less than -20 dB have been obtained by using lange couplers. For beginning the easy design, linear S-parameters have been extracted from the nonlinear equivalent circuit in foundry library, and equivalent circuits of devices at in/output ports were calculated from this S-parameters. The measured performances, which are in well agreement with the predicted ones, showed the MMIC HPA in this paper has the minimum 15 dB of linear gain, -20 dB of reflection coefficients and 31 dBm of output power over 17~25 GHz.

  • PDF