• 제목/요약/키워드: Nonlinear Vibration Analysis

검색결과 685건 처리시간 0.024초

전산구조진동/전산유체 기법을 연계한 저속 유동박리 유발 비선형 진동특성 연구 (Nonlinear Characteristics of Flow Separation Induced Vibration at Low-Speed Using Coupled CSD and CFD technique)

  • 김동현;장태진;권혁준;이인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.140-146
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of a 2-D.O.F airfoil system have been investigated in low Reynolds number incompressible flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-stokes code. To validate developed Navier-Stokes code, steady and unsteady flow fields around airfoil are analyzed. The present fluid/structure interaction analysis is based on the most accurate computational approach with computational fluid dynamics (CSD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed fur the low Reynolds region (R$_{N}$ =500~5000) that has a dominancy of flow viscosity. The effect of R$_{N}$ on the fluid/structure coupled vibration instability of 2-DOF airfoil system is presented and the effect of initial angle of attack on the dynamic instability are also shown.own.

  • PDF

수직하방 분사된 주의 비선형 거동에 관한 연구 (A Study on the Nonlinear Motion of a Vertical Liquid Jet)

  • 석지권;정환문;문수연;이충원
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.45-54
    • /
    • 2002
  • The breakup phenomena of a vertical laminar jet issuing from capillary tubes in a quiescent ambient air are investigated using a forced vibration analysis of the surface wave. Using a linear approach to the transient jet velocity, an approximate solution fur the longitudinal motion of a vertical liquid jet is theoretically derived, thus performing an instability analysis by a vibration method. The damping term of this equation is nonlinear as it depends on dimensionless parameters, a Weber number, and an Ohnesorge number. The instability condition is determined based on whether the coefficient of the damping term is less than zero or not. Uniform drop formation is dependent on the vibration frequency fur the forced vibration case.

음향 압축기 설계를 위한 축대칭 공명튜브 내부음장의 수치해석 및 특성연구 (Numerical Analysis of Nonlinear Acoustic Characteristics in Axisymmetric Resonant Tubes for Sonic Compressors)

  • 전영두;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.1009-1014
    • /
    • 2001
  • A numerical investigation on nonlinear oscillations of gas in an axisymmetric resonant tube is presented. When a tube is oscillated at a resonant frequency, acoustic variables such as density, velocity, and pressure undergo very large perturbation, often described as nonlinear oscillation. In order to analyze these phenomena, axisymmetric 2-D nonlinear governing equations have been derived and solved numerically. Numerical simulations were accomplished for cylindrical, conical, and 1/2 cosine-shape tubes, which have same volume and length. For conical and 1/2 cosine-shape tubes, very large variation of pressures can be induced without shock formation except the cylindrical tube. In addition, the results well agree to those of 1-D simple model analysis.

  • PDF

자왜재료를 이용한 선형 작동기의 유한요소 해석 (Finite Element Analysis of Magnetostrictive Linear Actuator)

  • 김윤창;김재환
    • 한국소음진동공학회논문집
    • /
    • 제17권4호
    • /
    • pp.356-362
    • /
    • 2007
  • Magnetostrictive materials have been used for linear actuators due to its large strain, large force output with moderate frequency band in the presence of magnetic field. However their performance analysis is difficult because of nonlinear material behaviors in terms of coupled strain-magnetic field dependence, nonlinear permeability, pre-stress dependence and hysteresis. This paper presents a finite element analysis technique for magnetostrictive linear actuator. To deal with coupled problems and nonlinear behaviors, a simple finite element approach is proposed, which is based on separate magnetic field calculation and displacement simulation. The finite element formulation and an in-house program development are illustrated, and a simulation model is made for a magnetostrictive linear actuator. The fabrication and performance test of the linear actuator are explained, and the performance comparison with simulation result is shown. Since this approach is simple, it can be applied for analyzing magnetostrictive underwater projectors and ultrasonic transducers.

Vibration Analysis of a Rotor considering Nonlinear Reaction of Hydrodynamic Bearing

  • Lee, Soo-Mok;Lim, Do-Hyeong;Bae, Jong-Gug;Yang, Bo-Suk
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권3호
    • /
    • pp.254-259
    • /
    • 2009
  • In this paper it was attempted to treat the hydrodynamic journal bearing as a time-based nonlinear reaction source in each step of rotor rotation in order to observe the bearing effect more realistically and accurately in stead of the conventional method of simple linearized stiffness and damping. Lubrication analysis based on finite element method is employed to calculate the hydrodynamic reaction of bearing and Newmark's method was used to calculate the rotor dynamics in the time domain. Simulation for an industrial electrical motor showed remarkable results with differences compared to those by the conventional method in the dynamic behavior of the rotor.

외란을 받는 축-베어링 시스템의 동적 거동에 대한 비선형 해석 (Nonlinear Analysis on Dynamic Behavior of a Rotor-Bearing System Under External Disturbances)

  • 노병후;김경웅
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.334-339
    • /
    • 2001
  • The nonlinear vibration characteristics of hydrodynamic journal bearings with a circumferentially groove are analyzed numerically when the external sinusoidal disturbances are given to the rotor-bearing system continuously. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis which uses the Reynolds condition. It is found that the difference between linear and nonlinear analysis is much more remarkable as the amplitude of external disturbance increases, and it depends upon the excitation frequency of external disturbance. It is also shown that the cavity region in the fluid film is increased as the amplitude or excitation frequency of external disturbance increases. The whirling center of the steady state orbit moves closer to the bearing center as the amplitude or the excitation frequency of the external disturbance increases because of smaller range of full film region.

  • PDF

회전기계의 결함진단을 위한 비선형 특징 추출 방법의 연구 (Study of Nonlinear Feature Extraction for Faults Diagnosis of Rotating Machinery)

  • ;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.127-130
    • /
    • 2005
  • There are many methods in feature extraction have been developed. Recently, principal components analysis (PCA) and independent components analysis (ICA) is introduced for doing feature extraction. PCA and ICA linearly transform the original input into new uncorrelated and independent features space respectively In this paper, the feasibility of using nonlinear feature extraction will be studied. This method will employ the PCA and ICA procedure and adopt the kernel trick to nonlinearly map the data into a feature space. The goal of this study is to seek effectively useful feature for faults classification.

  • PDF

비틀림 비선형성을 갖는 2차원 익형의 모델링 및 Bifurcation 해석 (Modeling and Bifurcation Analysis of the 2D Airfoil with Torsional Nonlinearity)

  • 임주섭;이상욱;김성준
    • 한국소음진동공학회논문집
    • /
    • 제24권1호
    • /
    • pp.14-20
    • /
    • 2014
  • Recent developments for high altitude, long endurance conventional UAVs(HALE UAVs) have revealed new issues regarding aircraft structure design and analysis. First of all, due to intensive mission requirements, the structures of HALE UAVs have lightweight and very flexible main wing with high aspect ratio, and slender fuselage. For this kind of structures, aeroelastic characteristics are different from conventional aircrafts. Hence, currently developed analysis methods are not suitable to fully understand strucutral dynamics of the very flexible aircraft, and to guarantee structural reliability. Therefore, various structural studies considering nonlinear behaviors which are generally ignored for the conventional aircraft strucutral analyis have been attracting researchers interests. Nonlinear flutter of the very flexible wing is one of the subject to be studied in combination with strong coupling between aeroelastic characteristics and flight dynamics. Herein, as preliminary study, modeling and nonlinear system analysis of the 2D airfoild with torsional nonlinearity have been discussed.

비틀림 비선형성을 갖는 2차원 익형의 모델링 및 Bifurcation 해석 (Modeling and Bifurcation Analysis of the 2D Airfoil with Torsional Nonlinearity)

  • 임주섭;이상욱;김성준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.226-231
    • /
    • 2013
  • Recent developments for high altitude, long endurance conventional UAVs (HALE UAVs) have revealed new issues regarding aircraft structure design and analysis. First of all, due to intensive mission requirements, the structures of HALE UAVs have lightweight and very flexible main wing with high aspect ratio, and slender fuselage. For this kind of structures, aeroelastic characteristics are different from conventional aircrafts. Hence, currently developed analysis methods are not suitable to fully understand strucutral dynamics of the very flexible aircraft, and to guarantee structural reliability. Therefore, various structural studies considering nonlinear behaviors which are generally ignored for the conventional aircraft strucutral analyis have been attracting researchers interests. Nonlinear flutter of the very flexible wing is one of the subject to be studied in combination with strong coupling between aeroelastic characteristics and flight dynamics. Herein, as preliminary study, modeling and nonlinear system analysis of the 2D airfoild with torsional nonlinearity have been discussed.

  • PDF