• Title/Summary/Keyword: Nonlinear Structural Analysis

Search Result 2,297, Processing Time 0.026 seconds

Non-linear Structural Optimization Using NROESL (등가정하중을 이용한 구조최적설계 방법을 이용한 비선형 거동구조물의 최적설계)

  • 박기종;박경진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1256-1261
    • /
    • 2004
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. It is more expensive to carry out nonlinear response optimization than linear response optimization. The conventional method spends most of the total design time on nonlinear analysis. Thus, the NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The function satisfies the descent condition at each cycle and the NROESL algorithm converges. It is mathematically validated that the solution of the algorithm satisfies the Karush-Kuhn-Tucker necessary condition of the original nonlinear response optimization problem. The NROESL algorithm is applied to two structural problems. Conventional optimization with sensitivity analysis using the finite difference method is also applied to the same examples. The results of the optimizations are compared. The proposed method is very efficient and derives good solutions.

  • PDF

Weibull distribution based constitutive model for nonlinear analysis of RC beams

  • Murthy, A. Ramachandra;Priya, D. Shanmuga
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.463-473
    • /
    • 2017
  • Reinforced concrete is a complex material to be modeled in finite element domain. A proper material model is necessary to represent the nonlinear behaviour accurately. Though the nonlinear analysis of RC structures evolved long back, still an accurate and reliable model to predict the realistic behaviour of components are limited. It is observed from literature that there are three well-known models to represent the nonlinear behaviour of concrete. These models include Chu model (1985), Hsu model (1994) and Saenz model (1964).A new stress-strain model based on Weibull distribution has been proposed in the present study. The objective of the present study is to analyze a reinforced concrete beam under flexural loading by employing all the models. Nonlinear behaviour of concrete is considered in terms of stress vs. strain, damage parameter, tension stiffening behaviour etc. The ductility of the RC beams is computed by using deflection based and energy based concepts. Both deflection ductility and energy based ductility is compared and energy based concept is found to be in good correlation with the experiments conducted. The behavior of RC beam predicted using ABAQUS has been compared with the corresponding experimental observations. Comparison between numerical and experimental results confirms that these four constitutive models are reliable in predicting the behaviour of RC structures and any of the models can be employed for analysis.

Modeling and Bifurcation Analysis of the 2D Airfoil with Torsional Nonlinearity (비틀림 비선형성을 갖는 2차원 익형의 모델링 및 Bifurcation 해석)

  • Lim, Joosup;Lee, Sang-Wook;Kim, Sung-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.14-20
    • /
    • 2014
  • Recent developments for high altitude, long endurance conventional UAVs(HALE UAVs) have revealed new issues regarding aircraft structure design and analysis. First of all, due to intensive mission requirements, the structures of HALE UAVs have lightweight and very flexible main wing with high aspect ratio, and slender fuselage. For this kind of structures, aeroelastic characteristics are different from conventional aircrafts. Hence, currently developed analysis methods are not suitable to fully understand strucutral dynamics of the very flexible aircraft, and to guarantee structural reliability. Therefore, various structural studies considering nonlinear behaviors which are generally ignored for the conventional aircraft strucutral analyis have been attracting researchers interests. Nonlinear flutter of the very flexible wing is one of the subject to be studied in combination with strong coupling between aeroelastic characteristics and flight dynamics. Herein, as preliminary study, modeling and nonlinear system analysis of the 2D airfoild with torsional nonlinearity have been discussed.

Modeling and Bifurcation Analysis of the 2D Airfoil with Torsional Nonlinearity (비틀림 비선형성을 갖는 2차원 익형의 모델링 및 Bifurcation 해석)

  • Lim, Joosup;Lee, Sang-Wook;Kim, Sung-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.226-231
    • /
    • 2013
  • Recent developments for high altitude, long endurance conventional UAVs (HALE UAVs) have revealed new issues regarding aircraft structure design and analysis. First of all, due to intensive mission requirements, the structures of HALE UAVs have lightweight and very flexible main wing with high aspect ratio, and slender fuselage. For this kind of structures, aeroelastic characteristics are different from conventional aircrafts. Hence, currently developed analysis methods are not suitable to fully understand strucutral dynamics of the very flexible aircraft, and to guarantee structural reliability. Therefore, various structural studies considering nonlinear behaviors which are generally ignored for the conventional aircraft strucutral analyis have been attracting researchers interests. Nonlinear flutter of the very flexible wing is one of the subject to be studied in combination with strong coupling between aeroelastic characteristics and flight dynamics. Herein, as preliminary study, modeling and nonlinear system analysis of the 2D airfoild with torsional nonlinearity have been discussed.

  • PDF

Computation of Nonlinear Elastic Strains Occurring in the Leaflet of the Edwards MIRA Mechanical Heart Valve by the Applied High Blood Pressure (혈압에 의해 Edwards MIRA 기계식인공심장판막에 발생하는 비선형 탄성변형률의 계산)

  • Kwon, Young-Joo;Yoon, Koo-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.493-504
    • /
    • 2008
  • This paper presents a computation of nonlinear elastic strains that may occur in the leaflet of the Edwards MIRA mechanical heart valve by the applied high blood pressure using the finite element analysis methodology. By adopting numerical analysis techniques of the commercial finite element analysis code, NISA, structural analyses of the Edwards MIRA mechanical heart valve are performed for the slight variation of leaflet thickness to get the elastic strains occurring in the leaflet while the high blood fluid pressures are applied to the leaflet surface in order that the maximum stress occurring in the leaflet may be less than the yield stress of the leaflet material(Si-Alloyed PyC). And so, only the geometric non-linearity is assumed because large geometric nonlinear elastic strains are expected rather than material nonlinear strains due to the applied high blood pressure. Computed linear and nonlinear elastic strains are compared to make sure the non-linearity of the computed elastic strain. The comparison result shows that large elastic strains occur clearly in the very thin leaflets as high blood pressures are applied. However, only the linear elastic strains occur for low blood pressures, and also for thick leaflets even for the high blood pressures. Hence the nonlinear structural analysis is very required in the structural design of a mechanical heart valve.

Nonlinear response of fixed jacket offshore platform under structural and wave loads

  • Abdel Raheem, Shehata E.
    • Coupled systems mechanics
    • /
    • v.2 no.1
    • /
    • pp.111-126
    • /
    • 2013
  • The structural design requirements of an offshore platform subjected to wave induced forces and moments in the jacket can play a major role in the design of the offshore structures. For an economic and reliable design; good estimation of wave loadings are essential. A nonlinear response analysis of a fixed offshore platform under structural and wave loading is presented, the structure is discretized using the finite element method, wave plus current kinematics (velocity and acceleration fields) are generated using 5th order Stokes wave theory, the wave force acting on the member is calculated using Morison's equation. Hydrodynamic loading on horizontal and vertical tubular members and the dynamic response of fixed offshore structure together with the distribution of displacement, axial force and bending moment along the leg are investigated for regular and extreme conditions, where the structure should keep production capability in conditions of the 1-yr return period wave and must be able to survive the 100-yr return period storm conditions. The result of the study shows that the nonlinear response investigation is quite crucial for safe design and operation of offshore platform.

Nonlinear Thermal Stress Analysis of In-ground LNG Storage Tank (LNG 지하 저장탱크 벽체의 비선형 열응력 해석)

  • 곽효경;송종영;이광모
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.111-118
    • /
    • 2000
  • Concrete cracking due to the temperature gradient across the wall, caused by the difference in temperature between cryogenic liquid natural gas stored and surrounding environment of in-ground LNG storage tank, is investigated in this study. Crack propagation of concrete LNG tank is effectively simulated by using a layered degenerated shell element. In addition, material nonlinearity is taken into consideration on the basis of the nonlinear elastic-orthotropic model. Finally, numerical analysis for a real LNG storage tank is conducted with the objective to verify the efficiency of the introduced model.

  • PDF

Analysis of Nonlinear Forced Vibrations by Ritz Vectors for a Stepped Beam (Ritz벡터를 이용한 변단면 보의 비선형 강제진동 해석)

  • 심재수;박명균
    • Computational Structural Engineering
    • /
    • v.6 no.1
    • /
    • pp.99-105
    • /
    • 1993
  • A Stepped beam with immovable ends under forced vibrations with large amplitude is investigated by using the finite element method and the Ritz vectors. Unlike the Eigen vectors, the Ritz vectors are generated by a simple recurrence relation. Moreover the Ritz vectors yield much faster convergence with respect to the number of vectors used than the use of Eigen vectors. The computer program is developed for nonlinear analysis using Ritz vectors instead of Eigen vectors and numerical examples are analysed for deflections and natural frequencies of stepped beam under various support conditions. Results show that the proposed method is valid and efficient.

  • PDF

Dynamic analysis of structures using linearized alogrithm for material nonlinearity (선형화 알고리듬을 이용한 재료적 비선형 구조물의 동적해석)

  • 심재수;임선묵
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.53-60
    • /
    • 1993
  • Nonlinear equation of motion due to material nonlinearity of structure is transformed to linear equation of motion by treating the nonlinear elastic force term as an applied force. The solution in a time step is carried out by iterative linear dynamic analysis. The present simple algorithm is varidated by several examples .The results show that this algorithm is and efficient.

  • PDF