• Title/Summary/Keyword: Nonlinear Sliding Surfaces

Search Result 19, Processing Time 0.033 seconds

Advanced Sorting Conditions Modeling of Frictional Force

  • Cho, Yong-Hee;Lee, Jeong-Wook;Chang, Yong-Hoon;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.439-443
    • /
    • 2004
  • In this research, we describe the sorting conditions modeling by friction force. As in any mechanism which is required to provide good dynamic performance and high accuracy, performance evaluation of optimal control. To understand friction it is necessary to investigate the topography of the sliding surfaces in contact. Any surfaces, even apparently smooth surfaces, are microscopically rough. When two surfaces come into contact, the true contact takes place only at point where asperities come together. The sorting conditions of sorting mechanism with friction force is sorting force must be equal with force can sorting one highest veneer among loaded veneer. This is just a thing being sorted veneer have friction with under veneer and this friction disturb sorting at the same time. Hence, the sorting conditions evaluation is important to sorting one veneer must get under control friction with veneer.

  • PDF

Sliding Mode Control of Two-Wheeled Welding Mobile Robot for Tracking Smooth Curved Welding Path

  • Chung, Tan-Lam;Bui, Trong-Hieu;Nguyen, Tan-Tien;Kim, Sang-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1094-1106
    • /
    • 2004
  • In this paper, a nonlinear controller based on sliding mode control is applied to a two-wheeled Welding Mobile Robot (WMR) to track a smooth curved welding path at a constant velocity of the welding point. The mobile robot is considered in terms of dynamics model in Cartesian coordinates under the presence of external disturbance, and its parameters are exactly known. It is assumed that the disturbance satisfies the matching condition with a known boundary. To obtain the controller, the tracking errors are defined, and the two sliding surfaces are chosen to guarantee that the errors converge to zero asymptotically. Two cases are to be considered: fixed torch and controllable torch. In addition, a simple way of measuring the errors is introduced using two potentiometers. The simulation and experiment on a two-wheeled welding mobile robot are provided to show the effectiveness of the proposed controller.

ADAPTIVE PI FUZZY CONTROLLER FOR INDUCTION MOTOR USING FEEDBACK LINEARIZING METHOD

  • Motlagh, Muhammad Reza Jahed;Hajatipour, Majid
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.514-518
    • /
    • 2005
  • In this paper an adaptive fuzzy PI controller with feedback linearizing meth od is implemented to controlling flux and torque separately in induction motor. In this paper first decoupling of torque and flux which are outputs to be controlled, is achieved by using feedback linearization methodology. Then for reducing the effect of noise and rejection of disturbance, main part of controller which is adaptive PI fuzzy controller, is designed. Coefficients of PI controller are determined by defined fuzzy rules due to error dynamic. Inputs of fuzzy system are defined sliding surfaces which consist of torque and flux errors. The main contribution of this paper is effect reduction of noise and disturbance on torque and flux which is based on fuzzy logic and nonlinear control. At last the effectiveness of the proposed control scheme in presence of noise and load disturbance is simulated and comprised to applying sliding method. The results verify better effectiveness of the proposed method for effect reduction of noise and disturbance.

  • PDF

Nonlinear Analysis with contact element between old and new concrete (Contact 요소를 이용한 신.구 콘크리트의 비선형 해석)

  • Cho, Sun-Kyu;Lee, John-Sun;Jeong, Woo-Cheol;Lee, John-Shin
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1050-1055
    • /
    • 2007
  • In the case of a rail road bridge extension work, especially single track to double track, the foundation of new substructure which supports the extended part of superstructure could be interfered by the exist foundation of an old bridge. When these two foundations are jointed to prevent such fatal effects of the structure as unequal subsidence of soil foundations, it is important to prove the structural behaviour of the joining surfaces between new foundation and old foundation. 3-Dimensional Finite Element Analysis Method have been studied for the solutions of the structural behaviour of the foundations. In this analysis, 'Contact Element' which allows the sliding of each adjoining member is used for the joint of the boundary surface of the old and new pier foundations. Furthermore, Material Nonlinear Behaviour Analysis also supports the accuracy of the result in this study because the foundations consist of concrete main bodies and reinforced steel bars. These detailed analyses secure the verification of the structural safety of the foundations in the extension work more firmly.

  • PDF

Sliding-Mode Control of Container Cranes (컨테이너크레인 시스템의 슬라이딩모드제어)

  • Lee Suk-Jae;Park Hahn;Hong Keum-Shik
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.747-753
    • /
    • 2005
  • In this paper, as an anti-sway control strategy of container cranes, we investigate a variable structure control in which the moving load follows a given trajectory, whereas both the trolley and hoist controllers achieve their positioning problems. It is crucial, in an automated container terminal, that collisions should be avoided during the transference of containers from one place to another. It is also necessary, in the case of a quay crane, to select suitable loading and unloading trajectories of containers, so that possible collisions with surrounding obstacles are avoided. After a brief introduction of the mathematical model, a robust control scheme (i.e., a second-order sliding mode control that guarantees a fast and precise transference and a suppression of the resulted swing) is presented. Despite model uncertainties and unmodeled actuators dynamics, the swing suppression from the given trajectory is obtained by constraining the system motion on suitable sliding surfaces, which include both the desired path and the swing angle. The proposed controller has been tested with a laboratory-size pilot crane. Experimental results are provided.

Tracking Control of Variable Structure System with a New Variable Boundary Layer (새로운 가변 경계층을 갖는 가변 구조 제어 시스템의 추적 제어)

  • Lee, Hui-Jin;Kim, Eun-Tae;Kim, Dong-Yeon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.3
    • /
    • pp.19-32
    • /
    • 2000
  • This paper suggests the variable structure controller with a new variable boundary layer for the accurate tracking control of the variable structure systems. Up to now, variable structure controller (VSC) applying the variable boundary layer did not remove chattering from an arbitrary initial state of the system trajectory because VSC has the limited initial state according to the fixed sliding surface. But, by using the linear time-varying sliding surfaces, the scheme has the robustness against chattering from all states. The suggested method can be applied to the second-order nonlinear systems with parameter uncertainty and extraneous disturbances, and has better tracking performance than the conventional method. To demonstrate the advantages of the proposed algorithm, it is applied to a two-link manipulator.

  • PDF

A Study on Wear Mechanism in Diamond-like Carbon Coated Surface by Finite Element Analysis (유한요소해석에 의한 DLC 코팅면의 마멸기구에 대한 연구)

  • Lee, Jun-Hyuk;Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.366-371
    • /
    • 2013
  • Various heat treatment and surface coating methods have been applied to machine parts. Nowadays, diamond-like carbon (DLC) coatings are widely used because of their excellent tribological characteristics. Despite the numerous studies on DLC-coated engineering surfaces, the exact wear mechanisms related to the coating thickness and elastic modulus have not been fully examined. In this study, a sliding contact problem between a small spherical hard particle and a DLC-coated steel surface is analyzed using a nonlinear finite element code, MARC. The maximum principal stress distributions and deformed surfaces are compared for different coating thicknesses and Young's modulus values. Plastically deformed surface shapes such as a groove and torus indicate that the most dominant wear mechanism for a DLC-coated surface is abrasive wear. Fatigue wear can also play a role in a case where the coating thickness is relatively large and the elastic modulus is high.

Dynamic analysis and controller design for a slider-crank mechanism with piezoelectric actuators

  • Akbari, Samin;Fallahi, Fatemeh;Pirbodaghi, Tohid
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.312-321
    • /
    • 2016
  • Dynamic behaviour of a slider-crank mechanism associated with a smart flexible connecting rod is investigated. Effect of various mechanisms' parameters including crank length, flexibility of the connecting rod and the slider's mass on the dynamic behaviour is studied. Two control schemes are proposed for elastodynamic vibration suppression of the flexible connecting rod and also obtaining a constant angular velocity for the crank. The first scheme is based on feedback linearization approach and the second one is based on a sliding mode controller. The input signals are applied by an electric motor located at the crank ground joint, and two layers of piezoelectric film bonded to the top and bottom surfaces of the connecting rod. Both of the controllers successfully suppress the vibrations of the elastic linkage.

2D numerical modelling of soil-nailed structures for seismic improvement

  • Panah, Ali Komak;Majidian, Sina
    • Geomechanics and Engineering
    • /
    • v.5 no.1
    • /
    • pp.37-55
    • /
    • 2013
  • An important issue in the design of soil-nailing systems, as long-term retaining walls, is to assess their stability during seismic events. As such, this study is aimed at simulating the dynamic behavior and failure pattern of nailed structures using two series of numerical analyses, namely dynamic time history and pseudo-static. These numerical simulations are performed using the Finite Difference Method (FDM). In order to consider the actual response of a soil-nailed structure, nonlinear soil behaviour, soil-structure interaction effects, bending resistance of structural elements and construction sequences have been considered in the analyses. The obtained results revealed the efficiency of both analysis methods in simulating the seismic failure mechanism. The predicted failure pattern consists of two sliding blocks enclosed by three slip surfaces, whereby the bottom nails act as anchors and the other nails hold a semi-rigid soil mass. Moreover, it was realized that an increase in the length of the lowest nails is the most effective method to improve seismic stability of soil-nailed structures. Therefore, it is recommended to first estimate the nails pattern for static condition with the minimum required static safety factor. Then, the required seismic stability can be obtained through an increase in the length of the lowest nails. Moreover, placement of additional long nails among lowest nails in existing nailed structures can be considered as a simple retrofitting technique in seismic prone areas.