• Title/Summary/Keyword: Nonlinear Representation

Search Result 155, Processing Time 0.023 seconds

NEWTONIAN COSMOLOGICAL PERTURBATIONS

  • Hwang, Jai-Chan
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.107-148
    • /
    • 1992
  • This paper presents a cosmological perturbation analysis in a Newtonian framework, using the Newtonian multi component version of the relativistic covariant equations. This work considers the fully nonlinear evolution of the perturbations, and is generalized to multicomponent systems and imperfect fluids. Known nonlinear solutions are presented in a general framework. Quasi-nonlinear analysis, considering both the compressible and rotational modes, is presented, including cases already known in the literature. The Fourier space representation of the conservation equations is also derived in a general context, with various decompositions of the velocity field. Commonly accepted cosmogonical frameworks are critically examined in the context of nonlinear evolution. This work may be regarded as the Newtonian counterpart of a recently presented general relativistic covariant formulation.

  • PDF

CONSTRUCTIVE WAVELET COEFFICIENTS MEASURING SMOOTHNESS THROUGH BOX SPLINES

  • Kim, Dai-Gyoung
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.955-982
    • /
    • 1996
  • In surface compression applications, one of the main issues is how to efficiently store and calculate the computer representation of certain surfaces. This leads us to consider a nonlinear approximation by box splines with free knots since, for instance, the nonlinear method based on wavelet decomposition gives efficient compression and recovery algorithms for such surfaces (cf. [12]).

  • PDF

Nonlinear Representation of Two-Stage Power-Factor-Correction AC/DC Circuits

  • Orabi Mohamed;Ninomiya Tamotsu
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.197-204
    • /
    • 2004
  • Two-stage Power-Factor-Correction (PFC) converters are the most common circuits for drawing sinusoidal and in phase current waveforms from an ac source with a good regulated output voltage. The first stage is a boost PFC converter with average-current-mode control for achieving the near-unity power factor and the second stage is a forward converter with voltage-mode control to regulate the output voltage. Stability analysis and design methods of two-stage PFC converters have previously been discussed using linear models. Recently, new nonlinear phenomena have been detected in pre-regulator boost PFC circuits and a new nonlinear model has been proposed for pre-regulated PFC converters. Therefore, investigation of two-stage PFC converters from the nonlinear viewpoint becomes important because the second stage DC/DC converter adds more complexity to the circuit. So, this paper introduces a study of the stability of two-stage PFC converters. A novel nonlinear model of two-stage PFC converters is proposed. Then, a stability analysis is made based upon this nonlinear model. The high correspondence between the simulated and experimental results confirms our analysis.

Sparse Point Representation Based on Interpolation Wavelets (보간 웨이블렛 기반의 Sparse Point Representation)

  • Park, Jun-Pyo;Lee, Do-Hyung;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.8-15
    • /
    • 2006
  • A Sparse Point Representation(SPR) based on interpolation wavelets is presented. The SPR is implemented for the purpose of CFD data compression. Unlike conventional wavelet transformation, the SPR relieves computing workload in the similar fashion of lifting scheme that includes splitting and prediction procedures in sequence. However, SPR skips update procedure that is major part of lifting scheme. Data compression can be achieved by proper thresholding method. The advantage of the SPR method is that, by keeping even point physical values, low frequency filtering procedure is omitted and its related unphysical thresholing mechanism can be avoided in reconstruction process. Extra singular feature detection algorithm is implemented for preserving singular features such as shock and vortices. Several numerical tests show the adequacy of SPR for the CFD data. It is also shown that it can be easily extended to nonlinear adaptive wavelets for enhanced feature capturing.

REPRESENTATION OF SOLUTIONS OF A SYSTEM OF FIVE-ORDER NONLINEAR DIFFERENCE EQUATIONS

  • BERKAL, M.;BEREHAL, K.;REZAIKI, N.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.409-431
    • /
    • 2022
  • In this paper, we deal with the existence of solutions of the following system of nonlinear rational difference equations with order five $x_{n+1}=\frac{y_{n-3}x_{n-4}}{y_n(a+by_{n-3}x_{n-4})}$, $y_{n+1}=\frac{x_{n-3}y_{n-4}}{x_n(c+dx_{n-3}y_{n-4})}$, n = 0, 1, ⋯, where parameters a, b, c and d are not executed at the same time and initial conditions x-4, x-3, x-2, x-1, x0, y-4, y-3, y-2, y-1 and y0 are non zero real numbers.

Time-Discretization of Delayed Multi-Input Nonlinear System Using A new algorithm

  • Qiang, Zhang;Zhang, Zheng;Kim, Sung-Jung;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.89-91
    • /
    • 2007
  • In this paper, a new approach for a sampled-data representation of nonlinear system that has time-delayed multi-input is proposed. That is largely devoid of illconditioning and is suitable for any nonlinear problem. The new scheme is applied to nonlinear systems with two or three inputs; and then the delayed multi-input general equation is derived. The method is based on thematrix exponential theory. Itdoes not require excessive computational resources and lends itself to a short and robust piece of software that can be easily inserted into large simulation packages. A performance of the proposed method is evaluated using a nonlinear system with time-delay: maneuvering an automobile.

  • PDF

A hybrid-separate strategy for force identification of the nonlinear structure under impact excitation

  • Jinsong Yang;Jie Liu;Jingsong Xie
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.119-133
    • /
    • 2023
  • Impact event is the key factor influencing the operational state of the mechanical equipment. Additionally, nonlinear factors existing in the complex mechanical equipment which are currently attracting more and more attention. Therefore, this paper proposes a novel hybrid-separate identification strategy to solve the force identification problem of the nonlinear structure under impact excitation. The 'hybrid' means that the identification strategy contains both l1-norm (sparse) and l2-norm regularization methods. The 'separate' means that the nonlinear response part only generated by nonlinear force needs to be separated from measured response. First, the state-of-the-art two-step iterative shrinkage/thresholding (TwIST) algorithm and sparse representation with the cubic B-spline function are developed to solve established normalized sparse regularization model to identify the accurate impact force and accurate peak value of the nonlinear force. Then, the identified impact force is substituted into the nonlinear response separation equation to obtain the nonlinear response part. Finally, a reduced transfer equation is established and solved by the classical Tikhonove regularization method to obtain the wave profile (variation trend) of the nonlinear force. Numerical and experimental identification results demonstrate that the novel hybrid-separate strategy can accurately and efficiently obtain the nonlinear force and impact force for the nonlinear structure.

Efficient Simulation Method for Dielectric Barrier Discharge Load

  • Oleg, Kudryavtsev;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.188-196
    • /
    • 2004
  • The dielectric barrier discharge is recognized as one of the efficient methods of ultraviolet light generation and ozone production. As well, it is widely utilized for gaseous wastes neutralization and other technological processes in industry. This electrochemical reaction is electrically equivalent to a nonlinear capacitive load that represents some difficulties for designing the power supply. Therefore, a conventional power supply is designed for a drastically simplified model of the load and generally is not optimal. This paper presents a fast simulation approach for the nonlinear capacitive model representation of the dielectric barrier discharge load lamp. The main idea of the proposed method is to use analytical solutions of the differential state equations for the load and find the unknown initial conditions for the steady state by an optimization method. The derived expressions for the analytical solutions are rather complicated, however they greatly reduce the calculation time, which make sense when a deeper analysis is performed. This paper introduces the proposed simulation method and gives some examples of its application such as estimation of the load equivalent parameters and load matching conditions.

MODEL PREDICTIVE CONTROL OF NONLINEAR PROCESSES BY USE OF 2ND AND 3RD VOLTERRA KERNEL MODEL

  • Kashiwagi, H.;Rong, L.;Harada, H.;Yamaguchi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.451-454
    • /
    • 1998
  • This paper proposes a new method of Model Predictive Control (MPC) of nonlinear process by us-ing the measured Volterra kernels as the nonlinear model. A nonlinear dynamical process is usually de-scribed as Volterra kernel representation, In the authors' method, a pseudo-random M-sequence is ar plied to the nonlinear process, and its output is measured. Taking the crosscorrelation between the input and output, we obtain the Volterra kernels up to 3rd order which represent the nonlinear characteristics of the process. By using the measured Volterra kernels, we can construct the nonlinear model for MPC. In applying Model Predictive Control to a nonlinear process, the most important thing is, in general, what kind of nonlinear model should be used. The authors used the measured Volterra kernels of up to 3rd order as the process model. The authors have carried out computer simulations and compared the simulation results for the linear model, the nonlinear model up to 2nd Volterra kernel, and the nonlinear model up to 3rd order Vol-terra kernel. The results of computer simulation show that the use of Valterra kernels of up to 3rd order is most effective for Model Predictive Control of nonlinear dynamical processes.

  • PDF

Criteria for processing response-spectrum-compatible seismic accelerations simulated via spectral representation

  • Zerva, A.;Morikawa, H.;Sawada, S.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.341-363
    • /
    • 2012
  • The spectral representation method is a quick and versatile tool for the generation of spatially variable, response-spectrum-compatible simulations to be used in the nonlinear seismic response evaluation of extended structures, such as bridges. However, just as recorded data, these simulated accelerations require processing, but, unlike recorded data, the reasons for their processing are purely numerical. Hence, the criteria for the processing of acceleration simulations need to be tied to the effect of processing on the structural response. This paper presents a framework for processing acceleration simulations that is based on seismological approaches for processing recorded data, but establishes the corner frequency of the high-pass filter by minimizing the effect of processing on the response of the structural system, for the response evaluation of which the ground motions were generated. The proposed two-step criterion selects the filter corner frequency by considering both the dynamic and the pseudo-static response of the systems. First, it ensures that the linear/nonlinear dynamic structural response induced by the processed simulations captures the characteristics of the system's dynamic response caused by the unprocessed simulations, the frequency content of which is fully compatible with the target response spectrum. Second, it examines the adequacy of the selected estimate for the filter corner frequency by evaluating the pseudo-static response of the system subjected to spatially variable excitations. It is noted that the first step of this two-fold criterion suffices for the establishment of the corner frequency for the processing of acceleration time series generated at a single ground-surface location to be used in the seismic response evaluation of, e.g. a building structure. Furthermore, the concept also applies for the processing of acceleration time series generated by means of any approach that does not provide physical considerations for the selection of the corner frequency of the high-pass filter.