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CONSTRUCTIVE WAVELET
COEFFICIENTS MEASURING
SMOOTHNESS THROUGH BOX SPLINES

Dal-Gyouncg KiMm

1. Introduction

In surface compression applications, one of the main issues is how
to efficiently store and calculate the computer representation of certain
surfaces. This leads us to consider a nonlinear approximation by box
splines with free knots since, for instance, the nionlinear method based
on wavelet decomposition gives efficient compression and recovery algo-
rithms for such surfaces (cf. [12]). DeVore et a!. [13] have established
a characterization between such types of nonlinear approximations and
the Besov space, B := B;(Lq(Rdv)), g=(a/d+1/p)™!, 0 < p < cc,
a > 0. Using this characterization, DeVore, Jawerth, and Lucier [12]
have provided some optimal algorithms for surface compression via box
splines.

The objective of this paper is to study a wavelet decomposition

(1.1) F=3 oMy,

kei,jerd

and a characterization

1/q
(1.2) 1fllge ~ (Z 3 |ck,]-rank.ju;)

keZ ez
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for the space B® with box splines M in constructive way, where My ()
:= M(2¥z — j). While DeVore et al. (cf. [13], [14]) have shown the
characterization (1.2) by the decomposition (1.1), tkey used bounded
nonlinear projectors from L, onto spline spaces for 1) < ¢ < 1. Their
nonlinear projectors are then nonconstructive and coraplicated to com:
pute. In this paper, we provide a construction of bounded linear pro-
jectors that are more constructive and easier to cornpute than those
of [13], [14]. Roughly sketching, to calculate waveict coefficients of
(1.1), we find the local polynomial I ;-approximation and then apply
quasi-interpolation techniques. This step initiates us into development
of constructive wavelet coefficients with an explicit form. Then. our
constructive wavelet coefficients can both be easily manipulated in nu
merical applications and characterize the space B*.

In §2, the definition of box splines and their basic properties are
reviewed from [4], [8] as well as some examples of box splines in R? are
presented for our purpose. In §3, a method to calculate the coefficients
of (1.1) is developed. The idea of this method does first use a local
Ly-projector from L, space, 1 < p < oc, onto piecewise polynomial
spaces and then project in a separate step from discontinuous piece
wise polynomial spaces to the spline spaces using quasi-interpolants.
This gives a bounded linear projector on L, for all 1 < p < oo. In §4,
the smoothness subspaces of L,(the Besov spaces), B*(L,), defined by
the modulus of smoothness are briefly reviewed from [19], [20]. Us
ing the fact [15] that the spaces B® are continuously embedded into
LP(Rd). the decomposition (1.1) of F in B?® is obtamned with an ex-
plicit expression of the wavelet coefficients in §5. In addition, using a
theorem of Frazier and Jawerth [17] aud a sharp estimate for the mod
ulus of smoothness of a box spline series, the characterization (1.2) of
the space B” is obtained. Here, our estimates cover a larger class of
the spaces B in other words, our range of a is larzer than the one
reported in [13].

We end this section with preliminary notations and definitions.

Q : a domain in R? (in this paper.  is either the unit cube [0,1]%
or RY).
|| : the greatest integer less than or equal to « € R.
[a] : the smallest integer greater than « € R.
D : the collection of all dyadic cubes. I, = 27F; 4 27%[0, 1],
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j € Z".
Dy : the collection of all dyadic cubes I with the side length (1) =
27k,
Ay(f,z) = Z;:o(“l)r_j (;)f(.r + hy): the rth differences of func-
tions f in the direction A € R? with AY(f,z) = f(z), where
k € N and (;) are binomial coeflicients.
P, : the collection of all polynomials with total degree less than r
on R%.
: the equivalence relation of two norms | - |1, || - |2 of a normed
space X; that is, || f||1 =~ || f]|2 means that there exist constants

C, and C; such that Cy||f|l2 < || flly << Cq||fllz for all f € X.

2

Let 0 < p < oc, then Ly(€2) denotes the collection of all complex-
valued Lebesgue measurable functions f on !2. For convenience, we
write || f|l, := ||fllz, @) when 2 = R?. Note that when 0 < p < 1, the
space L,(§2) is not a Banach space but a complete quasi-normed linear
space because || - || (q) is a quasi-norm, that is,

l_
(13) Nf+ gl <27 {1 fll,@ + gl ). for 0<p<1.

We shall use a useful fact: for any g < min(1,p) and sequence of

functions ( f;),
1/u
i
Lp(sz)> :

(1.4) HZ Aloo<(Tn

For notational brevity, we sometimes index the k,j term of (1.1) by
the dyadic cube I = 27%[0,1]¢ + 27%j (where z; := j27% corresponds
to I); that is,

(1.5) f=3_ > M

keZ 1€Dy,

Ly ()

where M; = M(2% . —j).
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2. Box Splines

Let X5, := {t,}, C Z%\ {0} be a direction set that spans R
The box spline M := M(-|X,) associated with X, is defined as the
distribution on R? given by the equation

(2.1) / Misplayde= [ o(Xa ) dy, v € CFRY
HR "
with @, = [-1/2,1/2]".
It is well known [4] that the distribution M is an L. (R?) function
and this function is a piecewise polynomial of total order m = n—d+1
(exact total degree n — d) with compact support:

(2.2) supp M = {Zyit,‘ ~1/2<y; <1/2, * € Xn}.
1=1

Moreover, this box spline M is in W2 Y (R%) N C™?(R?) where
(2.3)
r:=r(X,):= min{#Z | Z C X,, X, \ Z does not span R? }

Notice that » < m.
By taking p(z) = e¢1"¢ in (2.1), the Fourier transform of M is
obtained as

. —~ sin(t; - £/2

(2.4) Wie) = [] 2t

Then, the Strang-Fix condition [16] follows immediately from (2.4)
with » = r(X,,); that is,

() M@0)=1, M@2=j =0, jez\ {0}
(i) D*M(27j)=0, j=2Z'\{0}, |v]<r

b3
(@21
e

where DY is the differential operator of order v.
One of the most important properties of the box spline is that the
M satisfles the refinement equation:

(2.6) M(z)= Y a;M(2x — j),
7€l M
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where a; are certain constants with finite support I'3; depending only
on the support of M. Some computational and theoretical conse-
quences of this refinement equation have been developed in [10]. The
equation (2.6) plays a crucial part in the study of subdivision algo-
rithms of computer-aided design (see [7], for example).

There are some basic properties of the box spline M concerned in
integer translates M;. One is that the integer translates M;, I € Dy
form a partition of unity (see [4}),

(2.7) Y Mie)=1, 1eR"
1€Dyg

Another is that M are (algebraically) linearly independent if and only
if (cf. [9], [18])

(2.8) |det(Y,)] = 1

for each d x d matrix Yy whose column vectors are from X, and
span R?. We are interested in only box splines M satisfying (2.8).
From this assumption, for each Q € D, the functions M(- — j).
J € Ag, are linearly independent over @, where Ag = {j € v
M({- —j) does not vanish identically on @}. Further, the functions M/,
I € Dy. are {globally) linearly independent (see [4}).

We next give some examples of box splines on R? for later reference.
Let e, := (6;;)?=, denote the unit coordinate vectors in R? where &, ;
is the Kronecker delta. Also, let us set Myypwiz) := M (z | X(S‘,M,J,,))
with

(2.9) Xisuww) =1€1:5. €31 u,ep —e; v, eg+ ey w}.

Here, (2.9) means that the four directions e;, €9, €2 — €1, e, + e char-
acterize the direction set X, , . ) With multiplicities s, u, v, w, respec-
tively.

The first type of box spline is M,,:= M,yuo0. It is clear that M,, is
a tensor product of B-splines whose polynomial pieces are separated
by a rectangular partition (see Figure 1(a), for example). The second
type of box spline is M., := Mg,,0. This box spline is a piecewise
polynomial separated by a three-directional mesh (or type-1 triangu-
lation, which is obtained by drawing all diagcenals with negative slop
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in each rectangle) (see Figure 1(b), for example). Finally, M,y is
also a piecewise polynomial separated by a four-directional mesh (or
type-2 triangulation which is obtained by drawing both diagonal of
each rectangle) (see Figure 1(c), for example).

(a) (b) (c)

FIGURE 1. The various meshes developed by box splines:
(a) a rectangular partition(two-direction mesh); (b) a type-1
triangulation(three-direction mesh) (¢) a type-2 triangula-
tion (four-direction mesh)

To simplify our study, we are interested in the second type of box
splines on R?. In particular, we focus on the type Mygs, s € N. Our
analysis can be adapted to any types of box splines satisfying (2.8). It
is clear that the first and second type of box splines always satisfy (2.8)
(which 1s not always satisfied by box splines on type 2 triangulation).
The box splines on type-1 triangulation have been extensively studied
in [5] (see also [8]).

In the rest of this section, we consider the space of all spans of integer
translates of the box spline M:= M,,,, n = s + s + « and describe its
dilations. We shall employ the dilations of the space for approximation
spaces in the next section. We recall that for I < Dy, My(z) =
Mg j(x) == M(2¥x — x)), where z; := zkj = 27%. Then, M is
supported on the set that is the dyadic dilate (by 2F) and translate (by
z 1) of the support of M (see Figure 2(a), for example). We associate
both z; and I with M.
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(a) (b)

FIGURE 2 The support of the box spline, M;: (a) the
support and the center x; := 27%; of M;; (b) the tri-
angle K corresponding to z; and the center £; of A; in
the support of M;, I € Dy, for M = My, X222 =

10 -1 10 -1
(0 11 01 1)

For given k € Z, let S* = span{Mj | I € D;}. Our first observation
about SF is that any sum 1ep, A1M converges uniformly on com-
pact sets since each M7 is compactly supported. Also, from the basic
properties of box splines, for any S € §*, Sisin WI7{(R?)NC"2(R?)
with r = r(X,). In addition, the My, I € Dy, form a partition of unity,
that is, ZIeDk M; =1, k € Z. Further, due to the Strang-Fix condi-
tion (2.5), the spaces S* locallv contain the space P, of polynormials of
total degree less then r = r(X,,) (see [16]). Our last observation about
S* is that M, I € Dy are globally linearly independent for fixed k.
This follows from (2.8) and dilations.

3. Wavelet Decompositions via Dyadic Spline Approxima-
tions

In this section, we develop a wavelet decomposition of L,(R?), 1 <
p < oo through the box splines. For this, we focus on the type-1
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triangulation with side length 27*% and let 7 denote the collection
of all triangles K in the triangulation (see Figure 1(b)). In order to
develop a constructive approximation method calculating the wavelet
coeflicients, we introduce two spline spaces on 7%, and then combine
the spline spaces.

The first spline space on 7 is the space 2= I3 7% ) that consists
of all piecewise polynomials of total degree less than r on 7. To
obtain an approximation from this space, we shall emnploy local near-
best approximations on each K € Ty cf. [13]).

DEFINITION 3.1. For given ¥ € T4, a polynomial Py 1s a near-
best L,(N')-approzimation to f in L, K) from polynomials in P, with
constant A4 if

(3.1) [f = Prllr, k) < AE(f,K),
where E(f,K), :=infpep, ||f — P|| 1, (k) 18 the local error of approx-
imation of f € L,(K') by the elements from the P,.

A near-best approximation Ri(f) of f € L,(R?) from II] is now
defined by simply taking Ry(f)|y = Px. K € Ty. Then, it follows
from (3.1) that
1 Prlle, ) < AE(f K)p + || f

<c|s

Ly (K

(3.2) 7
L, (K): KeT.

where C' depends only on r and A. Hence, NRe(f)llp < Clifllp-

REMARK. There are many ways to construct a ncar-best approxi-
mation Ry of f € L,(R?) from 1. One way is duc to DeVore and
Popov [15]: for each ' € 7, Ry is chosen to be a best LK)
approximation to f € L,(R?) for some fixed 0 < v < p (see [15. Lemma
3.2]). Here, we can choose Ri to be a best L( A )-approximation
to f € L,(R?*) by virtue of [6]. However, one should note that the
best Lp(L') projection operator onto P, is bounded on L,(K), for
1 < p < ocandany r > 0. In §5, we shall employ the best L,( K )-
approximation from P, for the Ry to obtain a certain constructive
approximation.

Notice that an element in II} may be discontinuous along the mesh
lines in 7y (see Figure 1(b)). We shall also need tc construct good
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approximations (which have smoothness) from II}. For this, we use
the second type of box spline M = M,,, corresponding to X, , ;) with
n=s+s+s (see (2.9)). All arguments of this section apply equally
well to other types of box splines satisfying the condition (2.8). In
what follows, we set v = r(X(. ) and m =7 — 2.

The second spline space on 7 is the space S, k € Z, consisting of
the span of the dyadic dilations and translations of the box spline M.
By the observations for S* in the previous section, S* is a smooth spline
space in II} locally containing P, (notice that r < m). Also, since the
box spline M satisfies the condition (2.8), the functions M(-—j), ; € Z*
form a basis for S°. Further, by dilations, M, I € Dy form a basis for
Sk,

To provide an explicit fornula calculating spline approximations
from the space S*, we shall construct for given k € Z a set of dual
functionals dj ; to the basis My ; in S¥; that is, for fixed k € Z,
dg j(My ;) = 6; ;. Then, each spline S in S* can be written as

(3.3) S= " di;(S)M,;.

Jjez?

To simplify matters, by dilations and translations, we can characterize
di,j by doo (cf. [13]) as

(3.4) di;(S) = doo(S275(- + 1))

Notice that there are many representations for the functionals dy ; (see
(1] and [8], for example). In order to find a constructive formula for
dy,;, we utilize the de Boor-Fix formula [3] which was originally given
for the series of univariate B-splines A, of order r (and for tensor
products of A, in the multivariate case). The de Boor-Fix formula
says that for any point {; in the support of N'.(- — j), we can write

(3.5) do ;(S) = Z 8,D"(S)(&), jE€Z Seg8°

0<y<r—1

with certain coeflicients #, depending on {; and r. We have not seen
this formula for box splines. However, we only need an analog of (3.5)

for P ¢ P,.
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The analogous formula is given by de Boor and DeVore [2]: for any
point { ; in the support of Mj ;,

(3.6) do;(P)= Y 0,(j ~ £t ;)D"(P)& ;)

|v)<r-1

where @, is a polynomial of degree v such that

(3.7) Y O)Mr—j)=r el <L

JETL?

Here, the existence of such polynomials @, is guaranteed by the Strang-
Fix condition (2.5). Further, by dilations we obtain

(3.8) di;(P)i= Y O(xi, = &k, )DY(P) k)

Jvl<r—1

where £ ; is any point in the support of My ; and ry ; = 2 ~k;. There-
fore, each P € P, has the representation

(3.9) P="di,(PIMy,
€2

with the expression (3.8) for dy ;.

In order to combine two spline spaces I}, S¥, we next introduce
quasi-interpolant operators using the representation (3.9). For this, we
choose the point £ ; as the center of the lower triangle K correspond-
ing to the center z; of My, I € Dy (see Figure 2(b)). With this choice,
the functionals di ; are well defined for any function f that is » — 1
times continuously differentiable at each of the points £ ;. Then, for

fixed k € Z,

(3.10) Quf =Y di,(fIMy,

JEL?

is well defined for such f. This Qy is called a quasi-interpolant operator
[3] . Moreover, Q is a bounded operator from I 11 L,(R?) to S¥ N
L,(R?) by the lemmma below.
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LEMMA 3.2. If 1 < p < oc. then ||QiS|, < C||S||, for all S € T},
where C depends only on r.

Proof. For a proof see [15 Corollary 4.4]. (3

We now provide a constructive approximation to f € L,(R*) from

S*. For f € L,(R?), we define

Piof = QeRi(f), ke
(3.11) - 2: di;(Re(f)) My

jEen?

where Ri(f) := Ry is a near-best approximation to f from I} with a
constant A. Then, it follows from Lemma 3.2 and (3.2) that

(3.12) IPxfll, < ClAl,

with a constant C' depending only on r and 4. By taking Ry to be
the best Ly( A )-approximation from P (see the remark above), Py is a
well-defined and bounded operator from L,(R?) onto S* N L,(R?). So,
the P are constructive linear projectors. Further, since the constant C
in (3.12) is independent of k, the Py are uniformly bounded operators.

Using a relation between E.(f, K), and the averaged modulus of
smoothness (cf. [15]), one can prove for each f € L,(R?), 1 < p < o0,

(3.13) If = Pifll, < Cwf,27%),, keckZ
with a constant C' depending only on 7, p and A (see [15, §4], for

example). Here, the modulus of smoothness of order r in L,() is
defined by

wr(fat)p = Wr(f*,taﬂ)p = |Shl|lp HAIT;(.ﬂ ")HLP(Q(rh)‘) t>0,
<t

on the set (rh) := {.L‘T .x +rh € Q}. This implies that for
fe Lp(Rz)- 1 <p<ecc,

(3.14) |f—=Prfllp =0 as k --» oc.
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Also, using (3.12) and certain characterizations of the functional d; :=
dy ; (see [15] or [13]), one can prove that

(3.15) IPxfll, — 0 as k — —oo.

Thus, each f € L,(R?), 1 < p < oo, can be represented by the series

(3.16) F=2 (Pef =Piaf) =" D" e

kEZ k€Z 1€Dy

with convergence in the L, norm. Here, the last equality uses the
refinement equation (2.6) to rewrite Py f — Py_;f in terms of M,
I € Dy. Thus, we obtain a constructive wavelet decomposition (1.5)
for L,(R?), 1 < p < co. When p = oc, the wavelet decomposition (1.5)
is also valid for Cq and all functions in L. (R¢) with compact support.
In §5, we shall provide an explicit formula for the cocfficients c;.

4. Besov Spaces

In this section, we introduce Besov spaces defined by the modulus
of smoothness. The Besov spaces B2 (Ly(2)), 0 <a <o00,0<p,g<
oo are smoothness subspaces of L,(2). The parameter o gives the
smoothness order in L,(§), much like the order of differentiation, while
the parameter ¢ gives a finer scaling that measures subtle gradations
in smoothness of fixed order a.

DEFINITION 4.1. Let 0 < @ < o0, 0 < p,q¢ < 0o and r be a positive
integer with a < r. The Besov space By (L,(Q)) is defined as the set
of all functions f € L,(Q) for which

(4.1)
o0 dt 1/q
(/ [t—-awr(fvf)p]q?) . 0< q < 20,
|flBe (L, @) = 0
sup t~%w.(f,t),, g = 00,
>0

is finite. A (quasi-)norm for BX(L,(£)) is defined by

(4.2) 1l o L, = I fllL,i0) + |flBe (L, )
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REMARK. Because we allow values of p and ¢ less than one, this
norm does not always satisfy the triangle inequality, but it is always a
quasi-norm; that is, there exists a constant C such that for all f and

g in B(Ly(£2)),

IF +9llg 1,0 < CUIFNBa (2, ) + 915 (1, (2)))-

In addition, it is well known that different values of r > a give equiv-
alent norms (see [13], for example).

Notice that we could replace the integral and the supremum in
(4.1) by the integral and supremum over (0, 1) respectively, because
wr(f,t)p < C|fllp- Further, by dividing (0,1) into [27¥=1 27%) for
k € N, it follows that

1 ‘ dt 1
/U R ] D e ]

We shall sometimes use the following discretized version of the (quasi-

Jnorm for By(L,(£2)):

(4.3)
— 1 /s
S fignl) L 0<a<,
I llB () = I fll L+ ¥2! )
sup 2”%w,(f, =) g = oo,
v2>1 2v

because it is easier to compute upper and lower estimates for the dis-
cretized sum than the integral.

The Besov space, Bf(L,), includes several classical function spaces.
For instance, we have the followings (cf. [20]): for a > 0,

B3y (L)~ LZ, B (Ly)~C*?,

where L is the fractional order Sobolev space defined by the Bessel
potential and C® is the Zygmund spaces.

Especially, the special space B® = B (Ly(Q)) (¢ = (a/d+1/p)~1)
is closely related to nonlinear approximation theory. For instance, f
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is in the spaces B® if and only if nonlinear approxiinations by linear
combinations with N terms in the decomposition (1 1) for a function
f have order O(N ~®/?) in L, approximately (cf. [13]). In this paper,
we shall concentrate on this space.

We end this section by stating an important embedding property
of Besov spaces. Let 0 < o < 00, ) < p < oc. Then. the scale of
Besov spaces, B® = B;’(Lq(Rd)), ¢ = (a/d+1/p)~". is continuously
embedded into L,(R%); that is, if f € B®, then

(4.4) £y < ClLfl e

with a constant C' independent of f (see [15], for a proof).

5. Constructive Wavelet Coefficients Measuring Smooth-
ness of L,

In this section, we shall establish the constructive decomposition
(3.16) for the space B* = B;’(Lq(Rd)) (¢=(a/d+1/p) ", 1 < p<o0)

and provide its Littlewood Paley type characterization (1.2):

e /4
e~ (X 3 ert1314()

keZ 1€Dy

with the coefficients ¢; of (3.16). Notice that when 0 < ¢ < 1, we use
for Ry the Ly-local polynomial approximations of B?; this allows us
to use a computationally effective linear projector onto S*. On the
other hand, DeVore et al. [13], [14] used nonlinear operators bounded
on L, to obtain the characterization (1.2) of the space B®. Nonlinear
operators bounded on L, are more difficult to implement than the
simple local Ly projector that we use.

Throughout this section, let us employ the second type of box splines
M = M, s € N (sce §2). Also, let us fix r = r(X,,.) and d = 2. The
argument of this section can apply equally to other types of box splines
satisfying (2.8). To rcach our goal, we need a couple of preliminary
lemmas. First of these is a theorem of Frazier and Jawerth for the
homogeneous Besov spaces, B;"q (sev [17, Theoremn 3.7]).
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LEMMA 5.1. Let a € R and 0 < g < oo. Also, let N = max(|J —
2~ af,~1) and J* > J where J = 2/ min(1,q). Assume that {b;}cp
is a family of functions satisfying the followings: for some § with J —
a—|J—a] <b<1,

(5.1)

(i) / a7bp(z)dzr =0 if |y] < lal,
Re

(i) [br(z)} < 25(1 + 2Kz — oj|) XTI A2 )
() D)) < 20D o )T if ] < N,
(iv) |D7bi(x) - Dby (y)|

<Myt sup (142K — 2 -2y
|z|<|z~y]

if |v] = N.
Then, if f € B“I’"’(RZ) we have

(5.2) (Z PR TR

veZ''IeD,

7y 1/9
)= Cllggeaey
P

with a constant C independent of f, where x1(-) := |Q|~'/?x;(-) is the
L?-normalized characteristic function of I.

Proof. For a proof, we refer to [17, Theorem 3.7]. O

REMARK. Inour case, d =2, >0, 1 < <oc, and q := (a/d +
1/p)~'. Then J = 2/min(1,q) is either 2 cr 2/¢q. If J = 2, then
N = max(|—a],-1) = —1; otherwise, N = max(|2/¢ -2 - a],~1) =
max(|2(1/p—1)|,—1) = —1. Thus, either way, the conditions (5.1)(iii)
and (iv) are vacuous.

The lemma above will prove one direction (>) of (1.2). The next
lemma is an analog of a corollary of DeVore and Popov (cf. [15, Corol-
lary 5.2]), for the box spline M. This will prove the other direction
(<) of (1.2).

LEMMA 5.2. Let r be the iuteger associated with the box spline M.
Assume that 1 < p < 00, 0 < a < o0, and ¢ = (/2 + 1/p)~ L. If
0<a<AwithX=r—141/p, then for each S € S*, k € Z, we have

(5.3) S| < C2°K)18]],
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with a constant C independent of S and k.
Proof. We may assume that S € L,(R?). Let ex(f), be the error of
approximation of f by the elements of S*; that is,

(5.4) ex(f)p = s'él.I;k If - Silp keZ.

Since S € §*, we have ¢,(S), = 0 for v > k and eu(S)g < ||S|ly for
v < k. Then, we obtain

(5:5) (Z[zme"(s)"]q>l/q 5( f: [2"%(5);?)1/(1

vEZ V== —00

< C2°%)|S]j,

On the other hand, by the lemma below and the discrete Hardy in-
equality (cf. [11]), we obtain for 0 < a < A,

(5.6) (Z[Q"%r<s,z-k)qw)w <c(Tpasr) "

veZ vED

Therefore, combining (5.5) and (5.6) completes the proof of the lemma.
|

The lemma below is also an analog of a theorera of DeVore and
Popov (cf. 15, Theorem 4.8]) for the box splines M. In the lemma
below, we improve the range of @ (0 < « < r — 2 + 1/p) reported
in [13, §7] to 0 < @ < r — 1+ 1/p for the box splinc M even though
M € C™2*(R?). Here, the proof of the lemma below is almost the same
as that of Theorem 4.8 of [15].

LEMMA 5.3. Let p, q, 7 and X be as in Theorem 5.2. If f € L, (R?),
then

k 1/p
(5-7) Wr(f-,z_k)q < Cz_kx( Z [zy/\eu(f)q]ﬂ>

y= —oc
where p < min(1, ¢).
Proof. For a proof see §A.1 of Appendix. O

The following theorem is the main result of this section.
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THEOREM 5.4. Let r be the integer associated with M. Assume
that 1 < p< ocand 0 < a < occ. If f € B*, ¢ = (a/2+ 1/p)~1
and @ < A with A\ = r — 1+ 1/p, then f admits the constructive
decomposition (3.16):

f= Z Z e M.

keZ 1€Dy

Furthermore, the decomposition above provides the following charac-
terization:

1/q
(5.8) flan ~ (Z 3 ac1|q||M1|:;i) |

keZ 1€Dy

Proof. To begin with, we recall that the space B® is continuously

embedded into L,(R?); that is

(5.9) 1filp < Cllfll e

with a constant C independent of f (see §4). Then, every f € B¢
admits the decomposition (3.16) in L,(R?), 1 < p < oo. So, it remains
to show the characterization (5.8) with the coefficients ¢y of (3.16). Let
us first establish the direction

1/g
(5.10) (Z Y |c,;anJ||g) < C|f|ge
k€Z I€Dy

with C independent of f. For this, in §A.2 of Appendix, we shall show
that there exists a family {b;},;cp satisfying the conditions (5.1)(i) and
(i1) of Lemma 5.1 such that for I € Dy,

(5.11) er = 28(f,bp).

Once such a family {b;}¢p is found, we obtain by Lemma 5.1 (see the
remark to this lemma)

(5.12) (Z

keZ

PEAR VAN

a\ /¢
) < Ol fll oo sy
TED, q
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On the other hand, we have

(5.13)
DR IAY |x1 =" )" okeayif by 4“’“1/ xi(z)dz
keZ ' 1D, 9 kenleDy R
— Z 2: 2"9(2/9_2/")2“’2‘“](f,b1>]"
keZ 1€Dy
— Z 2: ZkQ(l‘z/”)l(f,bI)j",
keZ 1€D,

where the second equality has used the fact that 1/q = /2 + 1/p. In
addition, we have

YN ey =30 ST RS bIMEE -5

keZ I€Dy IceZ] =Dy

— \  okg(1-2/p)y/ 5
(5.14) - ;ZI:}_; 2% P 1<J51>|qHM”z
v & [t 243

< CZ Z 2ka1=2/P) (£ |9,

kel 1€Dx
Then, substituting (5.13) and (5.14) into (5.12) leads to (5.10). Here,
we have used the fact that Hf”B;’v‘?(md) < Clflpe(L,me)) for every a >

d( mmlq 1y
1 <p<oo,and 1/¢ = a/d + 1/p. Then, we have a > 2(m
because 1/¢ < a/2 + 1. Let us next establish the other direction

(5.15) |flga < C(Z Z f*l|”|*”l“§)

k€Z 1€Dy

1) and 0 < p < oo (cf. [19]). In our case, d = 2. & > 0,
- 1)

1/q

with a constant C' independent of f. Here, we shall use Lemma 5.2.
So, we start by rewriting (3.16) as

(5.16) F=33 M= Y Sk,

kEZ I €Dy keZ

where S; = Elevk egM; € 8F. When 1 < ¢ < , we just follow
Lemma 4.2 of [13] with the discrete Hardy inequality and Lemma 5.3
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to establish (5.15). To establish (5.15) for the case 0 < ¢ < 1, it is
enough to show that

(5.17) D ISk%. < C(Z > ICII“IiMIIIZ>-

keZ k€Z I€D)

Once we show the estimate (5.17), the sum 3, ., Sk converges in the
| - [[5a-norm because of (5.10). Therefore, since B is a complete
quasi-normed space, the decomposition (5.16' is valid in B®. Hence,
the subadditivity of | - |} implies clearly the estimate (5.15).

Now, it remains to show (5.17). Using the subadditivity of || - ||§ and
Lemma 5.2, we obtain

D ISKG < CS TN 2%k eg9) M) 8

ke kcZ 1€Dy

\q/p ag/2
< CZ Z 2akq"':1|q (/11&2 |‘MI|’J/i (/W Xsupp Mz)

k€Z €Dy

< CZ Z 269 |9)| M| § 270K

kecZ 1eD,

=C> N e Myllg

with a constant C independent of f. Here, the second inequality uses
Holder’s inequality with WIE+}7(I}__QT =1land |/g = a/2+1/p. Hence,
the proof of the theorem has been completed. O

Appendix A.1: Proofs of Lemma 5.3

Since f € L,(R?) can be rewritten as f = f — S + z’;:_m(su —
Sy—1) with S, € S satisfying ||f — S.lly = eu(f)g, v € Z, it follows
from (1.3) that

k

1/u
w12 < (I =Sy + 3 (S, = Sueri27H )

V=—0C
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where 1 = min(1,¢), and C is independent of f and k.
So, once we show that for each S € §¥, v € Z, and 0 < ¢ < oo,

(A.1.1) we(S,t)y < Cmin(1,2°*M)||S],

with C' depending only on the box spline M and ¢, and A =r—1+1/p,
then (5.7) follows immediately from ||f — S,||q = e.(f)q, v € Z and
1Sy = Su-illy < CUIF = Sully + If = Su1ll,) with C depending only
on q.

To show (A.1.1), we shall estimate A} (M, ;, - ), for given v € Z. Let
I' denote the set of all z € R? such that the segment 2 and z + rh are
in the same triangle K € 7, and M, ; does not vanish identically on
K. Also, let ' denote the set of all 2+ € R? such that z and z + rh are
in different triangles from K € 7, and M, ; does not vanish identically
on both of those triangles.

First, note that since AM,,,ijGTV
(recall that r < m), we have for any z € T, | DM, ;(z)] < C2"7,
|¥| = r. Then, we obtain

is a polynomial of total order m

AT(M, j,2)| < C(2°|h),  for xeT.

In addition, we have |I'| < C27?" since |supp M, ;| < C27%*. Here,
the (s are all independent of v and I\. Next, note that || M, ;]|
C2v(m=1) gince M, ; = M(2” - —j). Then, we obtain

VVC:‘Q— 1 S

AL (M, j, )| < C(2%|h])" 1, for zel"

In addition, we have |I''| < C'|h|27%. To see this, notice that for each
x € I'", the distance between z and the boundary of A is less than r|h|,
where K is the triangle containing 2. Then, the measure of all such
r € K is less than C|h|27% with a constant C' depending only on r.
So, since M, ; vanishes on all but C triangles with ' depending only
on M, the claim for the measure of I'' follows immediately.

By combining the results above, we obtain

(A.1.2)
/tA;(NIuJ,xﬂ"daﬁ < C(2v79|hjren= 4 v (r=1a || (=D o —v)

< C'min(1,2°M|p|* )22,
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where for the last inequality. we used the fact that |AL(M, ;, - )| <
C||M]|« with C independent of v, j and h, when 2¥|k| > 1; otherwise,
we used the fact that A = r - 1+ 1/p < min(r,r — 1 + 1/¢) because
1/p<1/gand 1< p< oo.

To complete the proof, let us recall from [13] that for S = 37, ;. d,;
(S)Mu,j €5,

1/q
( . 2_Vd'du,j(5)|q> ,  0<g<ox,
(A.1.3) 15[, ~ jezd
sup |d, ;(5)], q = oc.
jezs

Also, note that for fixed z € R?,

(A.14) [ALS, )9 < C Y |dyj(S)IARM, 4, 2],

jezd
with C' depending only on M, d, and ¢ when ¢ is small. Here, we have
used the fact that for fixed = € R?, the sum S(z) = ZJEZ‘ dy ;(S)M,;

(z) has at most C terms with C depending only on M. Hence, com-
bining the (A.1.2), (A.1.3), and (A.1.4) yields the (A.1.1). O

Appendix A.2: Completing the proof of Theorem 5.4

In this section, we shall show that there exists a family {b;};cp
satisfying the conditions (5.1)(i) and (ii) of Lemma 5.1 such that for
Ie Dk,

(A.2.1) c; =28(f,by).
Further, we shall give an explicit formula for 5;.

To begin with, let us recall from §3 that every f € L,(R?),1<p<
oo admits the decomposition

(A22) F=Y(Pef =Peoaf) =3 3 ey

keZ k€Z 1€Dy
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with the operators Prf = QxRi(f) == Zlev )My, where

(A2.3) di(f):= ) Oulzr—E)D*(fr,) (&)

lv]<r—1

Here, we have chosen the lower triangle A'; and its center £; corre-
sponding to I € Dy (see Figure 2 (b)) to provide the quasi-interpolation
operator Qg. Also, we have set up f;\ = Rp(f ‘I to be the local best
Ly( K )-approximation to f from P, on each K € 7.

Let us first provide an explicit form for the d;(f). For this, we
may start by considering the functional doo (ef. (3.4)). Let us fix
the triangle K¢ := Ky as a reference triangle (cf. Figure 2)(b)). For
a local basis for the space Pr| Kyt WO employ the monomials on K,
m?(zr) = ‘TW|1\'()’ l¥| < r, v € Z*? Then, we can derive a local dual
basis n7(z) associated with m” on K with the conditions

(A.2.4) (mf ") =65, 18], <

where (-, -) is the Ly(Kp) inner product. So, each 7 is a linear
combination of m?, |3| < r with suppm” C K. By dilations and
translations, we obtain a local basis {m]} and its local dual basis {r]}
for the space HZ'K, on K1, I € D by setting mj(z) : = 2km™(2%z — j)
and n}(z) := 2%p7(2%x — j), || < r. Indeed, for each I € Dy, the m],
n7, || < r are supported in Ky and satisfy

(A.2.5) (ml =65, 1Bl hl<r-1

Therefore, for given Ky, f , has the following representation:

(A.2.6) fri(z)="Y_ (fouimi(z), a€K

[vf<r—1

Now, combining (A.2.3) and (A.2.6) leads to an explicit form for d;( f):

di(fy=Y_ Y Ouas—E)fin))DY(m])Er)
(A27) jr|<r—1 |y|<r~1

= <f1TI>7
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where we set for x € Ky,

mi(@)i= Y > Oz —E)DY(m])(Er)n](x)

lyl<r=1{v|<r-1

= Y dim])].

Jv|<r—1

(A.2.8)

Here, for later reference, we note that ||77]|;_(x,) < C2% with C
depending only on r. To see this, we recall from [13] (cf. [15]) that for
any S € 117,

(A.2.9) d1(S)] < ClIS| oo (1)

Then, we obtain

Z di(mj)n]

|71

Loo(k’l) =
3“/,57"1 Loc(l"l)
<C Y MYl ok 177 o (161
(A.2.10) yi<r-1
< C2R Y Im g (ko) |77 Lo (K0
[vi<r—1
S Cv22k

with C depending only on r, where the second inequality uses (A.2.9).

To construct the family {b;}ep satisfying (5.1)(i), (ii) and (A.2.1),
let us rewrite Py f in terms of My ; by using the refinement equation
(2.6) as follows:

Pi_.f= Z =1,y Mi—1,

lez?

(A.2.11) = Z Z ai(fyTho1,0 M(25z — 21 — 1)

IEZ2 iEFM

:z Z aj_ ol f, Th—1,0) My ;.

lez? jel'm +21
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where 7y := 77 for I = It _; € Dy_; and I'ps is the support of the
coefficients of the refinement equation (2.6) for the box spline M. To
be explicit, let us define some index subsets of Z? as follows:

Li={jeZ|j=(2123), J' = (j;,ja>ez2},

Fz-—{JEZ"M—u{Hz;) = (j1,75) € 22},
={jeZ|j=(251.2i5+1), j ::(ji,j;)ezz},

T4-—{J€ZZIJ—~(11+1 27, +1), i = (31.73) € Z*}.

Then, from (A.2.11), we have

P 1f Z Z Tk 17"~ > \’Ik,]

JEI i€l NIy

‘+‘Z L fka l;—z)AIk]

J€l t€ln NI

+Z L faTk 1]~l)‘Mk]

JET 3 1€l NI'a

+Z L fka 1]—1>-‘Mk]

JET 4 1€l NIy

Taking account of Pyf — Py _1f, we define for given I = Iv; € D,
by := by ; as follows:

Tk — Z Qi Th—1,j' ' forj eI

1€l Ny
Tkj — E Qi Th—_1,j/ —i's for jeI'y

_ 1€l Ny

(A213) by, =27F%

Tk, — E A Th-1,5 —its for y € I'y

el N’y
Tkj — Z Ui Th—1,j! —its for y € T'y.

i€l NIy

Then, by (A.2.10), by, I € Dj are well-defined functions in L (R?)
with ||b7|loc < C2* where C is independent of k. Further, it follow
from (A.2.8) and (2.6) that the by ; is supported on the set

(A.2.14) Bk,j = (U{Ayk—]’l € Tr_q | le Kk,j})UA'k,j
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where 1~\k,]- ={l€Z*|j—2l €T, } (see Figure 3, for example). Thus,
we have Prf — Py 1 f =3 cp, 2k (f, b)Y M.

4

FIGURE 3. The supports of bi ; for the case M = Mosy,

with X (344 = ([‘) P “11): (a) B,j, § € T'y; (b) By,

j € I'a; (¢) Bi,j, j € T35 (d) By, j € I'y, where the big
shaded triangles show K_; ; and the small shaded triangles
shows K} ; corresponding to ;.

Now, we have ¢; = 2¥(f, b)) because the functions M;, I € Dy are
globally linearly independent (cf. (2.8)). Also, bx;, j € Z*, k € Z
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satisfy the condition (5.1)(ii) up to constants C independent of k and
J» because of their support (A.2.14) and bk jlloe < C2%. So, it remains
to show that the by ; satisfy the coundition (5.1)(i). Let us fix k € Z
and define for each j € Z?,

Ey = U {supp My_1 1| My_ 1 does not vanish identically on By j }
lez?

Ey ;= U {supp Mgy | My 11 does not vanish identically on Ey }
lez?

Then, the Strang-Fix condition (2.5; allows us to define -‘77:; € Sk-!
such that

x, for z € Erk,]‘,

A.2.15 gl (x) = { =
( ) 9x,; (1) 0, for = ¢ Ey ;,

where |y| < r — 1. Using the fact that for given k € Z, the Py,
reproduce all polynomials P € P, C $* and S*¥~!' ¢ .S*, we obtain for
cach j € Z?,

(Pwl.j - Pk-~192,j)’h‘k,, =0,

which implies that

(A216) Z <!112,]v bk.l>]k{k,l‘b»kvj: U |’)/| S ro- 1, j € Z‘Z_

le??
for fixed k. Therefore, for given j € Z?, (g,:'/J,bk']-) =0,y <r -1

because My are locally independent. Thus, we obtain for given I €
Dy,

(A2.17) /.T”’b](.z')dar ={g],br) =0, v <r -1,

where the first equality uses the fact that suppb; < E; C suppy;.
This proves (5.1)(1) because o < r. ]
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