• 제목/요약/키워드: Nonlinear Free Surface B.C

검색결과 15건 처리시간 0.01초

복소 경계요소법에 의한 비선형 자유수면문제 연구 (A Complex Velocity Boundary Element Method for Nonlinear Free Surface Problems)

  • 홍석원
    • 한국해양공학회지
    • /
    • 제4권1호
    • /
    • pp.62-70
    • /
    • 1990
  • Cauchy의 적분공식을 복소속도(complex velocity)에 적용하여 포텐시얼 유동을 해석하는 복소경계요소법이 개발되었다. 이 결과로 얻어지는 적분방정식은 경계면에서의 접선속도(tangential velocity)와 법선속도(normal velocity)의 함수로 주어진다. 자유수면에서의 접선속도의 시간변화(evolution of tangential velocity)를 수식화하기 위하여 새로운 비선형 동역학적 자유수면경계조건(nonlinear dynamic free surface boundary condition)을 유도하였다. 복소포텐시얼 대신 복소속도를 이용하는 이 방법은 유장내의 특이점(field singularity)을 용이하게 고려할 수 있으며, 수치미분없이 직접 경계면에서의 유속을 해로서 구하게 된다. 그러나 자유수면이 존재하는 문제의 경우에는, 자유수면에서의 동역학적 경계조건을 만족 시키기 위한 계산과정에 접선 벡타의 변화량을 추정하는 것이 포함되게 되어, 계산과정이 다소 복잡하게 된다.

  • PDF

Panel cutting method: new approach to generate panels on a hull in Rankine source potential approximation

  • Choi, Hee-Jong;Chun, Ho-Hwan;Park, Il-Ryong;Kim, Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권4호
    • /
    • pp.225-232
    • /
    • 2011
  • In the present study, a new hull panel generation algorithm, namely panel cutting method, was developed to predict flow phenomena around a ship using the Rankine source potential based panel method, where the iterative method was used to satisfy the nonlinear free surface condition and the trim and sinkage of the ship was taken into account. Numerical computations were performed to investigate the validity of the proposed hull panel generation algorithm for Series 60 ($C_B$=0.60) hull and KRISO container ship (KCS), a container ship designed by Maritime and Ocean Engineering Research Institute (MOERI). The computational results were validated by comparing with the existing experimental data.

Wave propagation in a 3D fully nonlinear NWT based on MTF coupled with DZ method for the downstream boundary

  • Xu, G.;Hamouda, A.M.S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • 제4권2호
    • /
    • pp.83-97
    • /
    • 2014
  • Wave propagation in a three-dimensional (3D) fully nonlinear numerical wave tank (NWT) is studied based on velocity potential theory. The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved using the indirect desingularized boundary integral equation method (DBIEM). The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme (ABM4) and mixed Eulerian-Lagrangian (MEL) method are used for the time-stepping integration of the free surface boundary conditions. A smoothing algorithm, B-spline, is applied to eliminate the possible saw-tooth instabilities. The artificial wave speed employed in MTF (multi-transmitting formula) approach is investigated for fully nonlinear wave problem. The numerical results from incorporating the damping zone (DZ), MTF and MTF coupled DZ (MTF+DZ) methods as radiation condition are compared with analytical solution. An effective MTF+DZ method is finally adopted to simulate the 3D linear wave, second-order wave and irregular wave propagation. It is shown that the MTF+DZ method can be used for simulating fully nonlinear wave propagation very efficiently.

Numerical simulation of fully nonlinear sloshing waves in three-dimensional tank under random excitation

  • Xu, Gang;Hamouda, A.M.S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • 제1권4호
    • /
    • pp.355-372
    • /
    • 2011
  • Based on the fully nonlinear velocity potential theory, the liquid sloshing in a three dimensional tank under random excitation is studied. The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved using the indirect desingularized boundary integral equation method (DBIEM). The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme (ABM4) and mixed Eulerian-Lagrangian (MEL) method are used for the time-stepping integration of the free surface boundary conditions. A smoothing scheme, B-spline curve, is applied to both the longitudinal and transverse directions of the tank to eliminate the possible saw-tooth instabilities. When the tank is undergoing one dimensional regular motion of small amplitude, the calculated results are found to be in very good agreement with linear analytical solution. In the simulation, the normal standing waves, travelling waves and bores are observed. The extensive calculation has been made for the tank undergoing specified random oscillation. The nonlinear effect of random sloshing wave is studied and the effect of peak frequency used for the generation of random oscillation is investigated. It is found that, even as the peak value of spectrum for oscillation becomes smaller, the maximum wave elevation on the side wall becomes bigger when the peak frequency is closer to the natural frequency.

유체 충격 하중 예측을 위한 MPS법의 개량 (IMPROVEMENT OF MPS METHOD IN SIMULATING VIOLENT FREE-SURFACE MOTION AND PREDICTING IMPACT-LOADS)

  • 황성철;이병혁;박종천
    • 한국전산유체공학회지
    • /
    • 제15권1호
    • /
    • pp.71-80
    • /
    • 2010
  • The violent free-surface motions and the corresponding impact loads are numerically simulated by using the Moving Particle Semi-implicit (MPS) method, which was originally proposed by Koshizuka and Oka (1996) for incompressible flows. In the original MPS method, there were several shortcoming including non-optimal source term, gradient and collision models, and search of free-surface particles, which led to less-accurate fluid motions and non-physical pressure fluctuations. In the present study, how those defects can be remedied is illustrated by step-by-step improvements in respective processes of the revised MPS method. The improvement of each step is explained and numerically demonstrated. The numerical results are also compared with the experimental results of Martin and Moyce (1952) for dam-breaking problem. The current numerical results for violent free-surface motions and impact pressures are in good agreement with their experimental data.

패널절단법 선체표면 패널생성을 위한 새로운 시도 (Panel Cutting Method a New Approach in Hull Surface Panel Generation)

  • 김진;반석호;박일룡;김광수;최희종
    • 대한조선학회논문집
    • /
    • 제43권6호
    • /
    • pp.638-646
    • /
    • 2006
  • In this paper a new hull-panel generation algorithm named 'Panel Cutting Method' was developed to solve the flow phenomena around a ship advancing on the free surface with a constant speed. In this algorithm the non-linearity of the free surface boundary conditions was taken into account using the iterative method and the raised panel was used at each iteration step. Numerical calculations were performed to investigate the validity of the developed algorithm using the series $60(C_B=0.60)$ hull The wave resistance coefficients, the wave patterns and the wave heights were compared between the computed and the experimental results at Fn=0.25 and 0.316. The comparison showed good agreement between computation and experiment.

입자법을 이용한 댐 붕괴의 수치 시뮬레이션 (NUMERICAL SIMULATION OF DAM-BROKEN PROBLEMS USING A PARTICLE METHOD)

  • 이병혁;정성준;김영훈;박종천
    • 한국전산유체공학회지
    • /
    • 제13권1호
    • /
    • pp.28-34
    • /
    • 2008
  • A particle method recognized as one of the gridless methods has been developed to investigate the nonlinear free-surface motions interacting to the structures. The method is more feasible and effective than convectional grid methods for solving the non-linear free-surface motion with complicated boundary shapes. The right-handed side of the governing equations for incompressible fluid, which includes gradient, viscous and external force terms, can be replaced by the particle interaction models. In the present study, the developed method is applied to the dam-broken problem on dried- and wet-floor and its adequacy will be discussed by the comparison with the experimental results.

입자법을 이용한 댐 붕괴의 수치 시뮬레이션 (NUMERICAL SIMULATION OF DAM-BROKEN PROBLEMS USING A PARTICLE METHOD)

  • 박종천;이병혁;정성준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.258-263
    • /
    • 2007
  • A particle method recognized as one of the gridless methods has been developed to investigate the nonlinear free-surface motions interacting to the structures. The method is more feasible and effective than convectional grid methods for solving the non-linear free-surface motion with complicated boundary shapes. The right-handed side of the governing equations for incompressible fluid, which includes gradient, viscous and external force terms, can be replaced by the particle interaction models. In the present study, the developed method is applied to the dam-broken problem on dried- and wet-floor and its adequacy will be discussed by the comparison with the experimental results.

  • PDF

Hydrodynamic Hull Form Design Using an Optimization Technique

  • Park, Dong-Woo;Choi, Hee-Jong
    • International Journal of Ocean System Engineering
    • /
    • 제3권1호
    • /
    • pp.1-9
    • /
    • 2013
  • A design procedure for a ship with minimum resistance had been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) combined with computational fluid dynamics (CFD) technique. The frictional resistance coefficient was estimated by the ITTC 1957 model-ship correlation line formula and the wave-making resistance coefficient was evaluated by the potential-flow panel method with the nonlinear free surface boundary conditions. The geometry of the hull surface was represented and modified by B-spline surface modeling technique during the optimization process. The Series 60 ($C_B$=0.60) hull was selected as a parent hull to obtain an optimized hull that produces minimum resistance. The models of the parent and optimized hull forms were tested at calm water condition in order to demonstrate the validity of the proposed methodolgy.

Second-order wave radiation by multiple cylinders in time domain through the finite element method

  • Wang, C.Z.;Mitra, S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • 제1권4호
    • /
    • pp.317-336
    • /
    • 2011
  • A time domain finite element based method is employed to analyze wave radiation by multiple cylinders. The nonlinear free surface and body surface boundary conditions are satisfied based on the perturbation method up to the second order. The first- and second-order velocity potential problems at each time step are solved through a finite element method (FEM). The matrix equation of the FEM is solved through an iteration and the initial solution is obtained from the result at the previous time step. The three-dimensional (3D) mesh required is generated based on a two-dimensional (2D) hybrid mesh on a horizontal plane and its extension in the vertical direction. The hybrid mesh is generated by combining an unstructured grid away from cylinders and two structured grids near the cylinder and the artificial boundary, respectively. The fluid velocity on the free surface and the cylinder surface are calculated by using a differential method. Results for various configurations including two-cylinder and four-cylinder cases are provided to show the mutual influence due to cylinders on the first and second waves and forces.