• Title/Summary/Keyword: Nonlinear Dynamic Behavior

Search Result 707, Processing Time 0.03 seconds

Effects of a One-Way Clutch on the Nonlinear Dynamic Behavior of Spur Gear Pairs under Periodic Excitation

  • Cheon Gill-Jeong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.941-949
    • /
    • 2006
  • Nonlinear behavior analysis was used to verify whether a one-way clutch is effective for reducing the torsional vibration of a paired spur gear system under periodic excitation. The dynamic responses were studied over a wide frequency range by speed sweeping to check the nonlinear behavior using numerical integration. The gear system with a one-way clutch showed typical nonlinear behavior. The oscillating component of the dynamic transmission error was reduced over the entire frequency range compared to a system without a one-way clutch. The one-way clutch also eliminated unsteady continuous jump phenomena over multiple solution bands, and prevented double-side contact, even with very small backlash. Installing a one-way clutch on both sides of the gear system was more effective at mitigating the negative effects of external periodic excitation and various parameter changes than a conventional gear system without a one-way clutch.

A Study on the Nonlinear Analysis of Dynamic Response of Shell Structure (Shell 구조물의 비선형 동적응답 해석에 관한 연구)

  • Bae, Dong-Myung;Jin, Jong-Dae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.79-92
    • /
    • 1992
  • This is analyzed using the finite element method which is appling excellent isoparametric curve element in the aspect of large usages of dynamic responses in which is regarding geometric and material nonlinear of a large scale shell structure of an airplane, a submarine, a ship, and an ocean structure. The solution of dynamic equations is got by direct integration method using time-stepping procedure and regarding Central Difference Method of the both solutions. But because formal matrix factorization is not necessary in each time step and it does not take less time to compute relatively, this method must be regarded very few time steps on the condition. Axisymmatric shell problems are inspected using 8 node Isoparametric element in this paper. Partial axisymmatric spherical shell is used as a model to analyze axisymmatric nonlinear dynamic behavior regarding. Total Lagrangian formulation in geometric nonlinear behavior and elastio-viscoplastic in material nonlinear behavior.

  • PDF

Behavior factor of vertically irregular RCMRFs based on incremental dynamic analysis

  • Habibi, Alireza;Gholami, Reza;Izadpanah, Mehdi
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.655-664
    • /
    • 2019
  • Behavior factor of a structure plays a crucial role in designing and predicting the inelastic responses of it. Recently, irregular buildings have been interested in many designers. To design irregular structures, recognizing the inelastic behavior of them is necessary. The main objective of this study is to determine the behavior factor of irregular Reinforced Concrete Moment Resisting Frames (RCMRFs) via nonlinear Incremental Dynamic Analysis (IDA). To do so, first, several frames are designed according to the regulations of the Iranian national building code. Then the nonlinear incremental dynamic analysis is performed on these structures and the behavior factors are achieved. The acquired results are compared with those obtained using pushover analysis and it is shown that the behavior factors acquired from the nonlinear incremental dynamic analysis are somewhat larger than those obtained from pushover analysis. Eventually, two practical relations are proposed to predict the behavior factor of irregular RCMRFs. Since these relations are based on the simple characteristics of frames such as: irregularity indices, the height and fundamental period, the behavior factor of irregular RCMRFs can be achieved efficiently using these relations. The proposed relations are applied to design of four new irregular RCMRFs and the outcomes confirm the accuracy of the aforementioned relations.

Finite Element Modeling and Analysis of Nonlinear Dynamic characterisics of Leaf spring (판 스프링의 비선형 동특성 해석)

  • 임홍재;권영일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.842-846
    • /
    • 1996
  • Leaf springs are widely used as a major suspension component in many commercial vehicles, such as buses, trucks, etc. They have a complex dynamic behavior due to the geometric nonlinear and the contact mechanism between the leaves. The interface conditions between the leaves play a significant role in the global behavior of the comfort and ride of the vehicle system. The paper concentrates on modeling leaf springs and contact frictions between the leaves using a nonlinear finite element approach. A nonlinear load-displacement hysteresis curve for the leaf spring is simulated and its results are compared with test results.

  • PDF

Rheological Behavior of Viscoelastic Semi-Solid Ointment Base (Vaseline) in Oscillatory Shear Flow Fields (진동전단유동장에서 점탄성 반고형 연고기제(바셀린)의 레올로지 거동)

  • Song, Ki-Won;Chang, Gap-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Using a Rheometries Dynamic Analyzer (RDA II), the dynamic viscoelastic properties of a semi-solid ointment base (vaseline) in large amplitude oscillatory shear flow fields were measured over a temperature range of $25{\sim}45^{\circ}C$ and the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a wide range of angular frequencies. In this article, the nonlinear viscoelastic behavior was reported from the experimentally obtained data and the effect of temperature on this behavior was discussed in detail. In addition, the angular frequency and temperature dependencies of a linear viscoelastic behavior were explained. Finally, the applicability of a time-temperature superposition principle originally developed for polymeric materials was examined using a shift factor. Main results obtained from this study can be summarized as follows : (1) At very small strain amplitude region, vaseline shows a linear viscoelastic behavior independent of the imposed deformation magnitudes. Above a critical strain amplitude $({\gamma}_{0}=0.1{\sim}0.2%)$, however, vaseline exhibits a nonlinear viscoelastic behavior ; indicating that both the storage modulus and dynamic viscosity are sharply decreased with increasing deformation magnitude. (2) In large amplitude oscillatory shear flow fields, an elastic behavior (storage modulus) has a stronger strain amplitude dependence and begins to show a nonlinear behavior at a smaller strain amplitude region than does a viscous behavior (dynamic viscosity). (3) In small amplitude oscillatory shear flow fields, the storage modulus as well as the loss modulus are continuously increased as an increase in angular frequency and an elastic nature is always superior to a viscous behavior over a wide range of angular frequencies. (4) A time-temperature superposition principle can successfully be applicable to vaseline. This finding allows us to estimate the dynamic viscoelastic behavior of vaseline over an extraordinarily extended range (11 decades) of angular frequencies inaccessible from the experimentally measured range (4 decades).

The Numerical Modelling and Dynamic Collapse Analysis of the Rectangular Tube (사각관의 수치 모델링 및 동적 붕괴 해석)

  • 강신유;한동철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.42-48
    • /
    • 1993
  • In this paper, dynamic collapse behavior of the rectangular tube under impact loading is anlayzed using nonlinear finite element method of shell element. In case of shell element formulation using corotational element coordinates system, dynamic collapse behavior is analyzed without initial imperfection, and with initial imperfection. This paper reveals that the collapse of a rectangular tue without initial imperfection is caused by an error of transformation of the corotational coordinates system.

  • PDF

The Dynamic Analysis of Cable Dome Structures (케이블 돔의 구조물의 동적 비선형 해석)

  • Seo, Jun-Ho;Han, Sang-Eul;Lee, Sang-Ju
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.113-122
    • /
    • 2004
  • Cable domes deform very largely because of the characteristics of flexible hybrid system and pre-tension, and include geometrical non-linearity in those structural behavior. Especially wind load is more dominant than seismic load, because cable domes are flexible structures whose bending stiffness is very small and self-weight is very light. Therefore, in this paper, the Modified Stiffly Stable Method is applied to analyze the nonlinear dynamic behavior of cable domes and compared these results with ones of the $Newmark-{\beta}$ Method which is generally used. The Seoul Olympic Gymnastic Arena is taken as an numerical example and three kinds of models with giving each different intensity of pre-tension are selected. And dynamic nonlinear behavior of cable domes are analyzed by artificial spectrum of wind velocity wave which is similar to actual wind loads.

  • PDF

Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment

  • Alimoradzadeh, M.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.705-714
    • /
    • 2022
  • The aim of this paper is to investigate nonlinear dynamic responses of functionally graded composite beam resting on the nonlinear viscoelastic foundation subjected to moving mass with temperature rising. The non-linear strain-displacement relationship is considered in the finite strain theory and the governing nonlinear dynamic equation is obtained by using the Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then the governing equation is solved by using of multiple time scale method. The influences of temperature rising, material distribution parameter, nonlinear viscoelastic foundation parameters, magnitude and velocity of the moving mass on the nonlinear dynamic responses are investigated. Also, the buckling temperatures of the functionally graded beams based on the finite strain theory are obtained.

Nonlinear behavior of concrete gravity dams and effect of input spatially variation

  • Mirzabozorg, H.;Kianoush, R.;Varmazyari, M.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.365-377
    • /
    • 2010
  • In the present article, effect of non-uniform excitation due to spatially variation of seismic input on nonlinear response of concrete gravity dams is considered. The reservoir is assumed compressible. Isotropic damage mechanics approach is used to model static and dynamic nonlinear behavior of mass concrete in 2D space. The validity of utilized nonlinear model is considered using available theoretical results under static and dynamic conditions. The tallest monolith of Pine Flat dam is selected as a case study. Two cases are analyzed for considering the effect of limited wave propagation velocity on seismic behavior of the dam-reservoir system in which travelling velocities are chosen as 2000 m/s and infinity. It is found that tensile damage in neck and toe regions and also, in the vicinity of the base increase when the system is excited non-uniformly.

Geometrically Nonlinear Dynamic Analysis of Cable Domes (케이블 돔의 기하학적 비선형 동적해석)

  • 한상을;서준호;김종범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.61-68
    • /
    • 2003
  • Cable domes deform very largely because of the characteristics of flexible hybrid system and pre-tension, and include geometrical non-linearity in those structural behavior. Especially wind load is more dominant than seismic loads, because cable domes are flexible structures whose stiffness is very small and self-weight is very light. Therefore, in this paper, Modified Stiffly Stable Method is applied to analyze the nonlinear dynamic behavior of cable domes and compared these results with ones of Newmark-β Method which is generally used. The Seoul Olympic Gymnastic Arena is taken as an numerical example and three kinds of models with giving each different intensity of pre-tension are selected. And dynamic nonlinear behavior of cable domes are analyzed by artificial spectrum of wind velocity wave which is similar to actual wind loads.

  • PDF