• Title/Summary/Keyword: Nonlinear Dynamic Analyses

Search Result 408, Processing Time 0.028 seconds

Seismic response assessment of high-strength concrete frames strengthened with carbon fiber reinforced polymers

  • Rahmdel, Javad Mokari;Vahid-Vahdattalab, Farzin;Shafei, Erfan;Zirakian, Tadeh
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.735-744
    • /
    • 2021
  • In recent years, the use of new materials and technologies with the aim of developing high-performing and cost-effective structures has greatly increased. Application of high-strength concrete (HSC) has been found effective in reducing the dimensions of frame members; nonetheless, such reduction in dimensions of structural elements in the most cases may result in the lack of accountability in the tolerable drift capacity. On this basis, strengthening of frame members using fiber reinforced polymers (FRPs) may be deemed as an appropriate remedy to address this issue, which albeit requires comprehensive and systematic investigations. In this paper, the performance of properly-designed, two-dimensional frames made of high-strength concrete and strengthened with Carbon Fiber Reinforced Polymers (CFRPs) is investigated through detailed numerical simulation. To this end, nonlinear dynamic time history analyses have been performed using the Seismosoft software through application of five scaled earthquake ground motion records. Unstrengthened (bare) and strengthened frames have been analyzed under seismic loading for performance assessment and comparison purposes. The results and findings of this study show that use of CFRP can be quite effective in seismic response improvement of high-strength-concrete structures.

Nonlinear semi-active/passive retrofit design evaluation using incremental dynamic analysis

  • Rodgers, Geoffrey W.;Chase, J. Geoffrey;Roland, Thomas;Macrae, Gregory A.;Zhou, Cong
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.109-120
    • /
    • 2022
  • Older or damaged structures can require significant retrofit to ensure they perform well in subsequent earthquakes. Supplemental damping devices are used to achieve this goal, but increase base shear forces, foundation demand, and cost. Displacement reduction without increasing base shear is possible using novel semi-active and recently-created passive devices, which offer energy dissipation in selected quadrants of the force-displacement response. Combining these devices with large, strictly passive energy dissipation devices can offer greater, yet customized response reductions. Supplemental damping to reduce response without increasing base shear enables a net-zero base shear approach. This study evaluates this concept using two incremental dynamic analyses (IDAs) to show displacement reductions up to 40% without increasing base shear, more than would be achieved for either device alone, significantly reducing the risk of response exceeding the unaltered structural case. IDA results lead to direct calculation of reductions in risk and annualized economic cost for adding these devices using this net-zero concept, thus quantifying the trade-off. The overall device assessment and risk analysis method presented provides a generalizable proof-of-concept approach, and provides a framework for assessing the impact and economic cost-benefit of using modern supplemental energy dissipation devices.

Experimental Verifications and Electromagnetic Characteristics Analysis of Multi-Pole Permanent Magnet Generator for Small-Scaled Wind Power System (소용량 풍력시스템을 위한 다극 영구자석형 발전기의 전자기적 특성 해석 및 실험적 검증)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Kim, Hyun-Kyu;Choi, Jang-Young;Yoon, Gi-Gap
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.609_610
    • /
    • 2009
  • This paper deals with experimental verifications and the electromagnetic characteristics analysis of multi-pole permanent magnet (PM) generator for small-scaled wind power system. Field distribution due to PMs and winding current, cogging torque considering skew effect are analyzed. In addition, using the equivalent circuit method and dynamic d-q method, generating performance analysis is performed. Analysis results are validated by comparison with nonlinear finite element analyses and experimental results.

  • PDF

Structural robustness of RC frame buildings under threat-independent damage scenarios

  • Ventura, Antonio;De Biagi, Valerio;Chiaia, Bernardino
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.689-698
    • /
    • 2018
  • This study focuses on a novel procedure for the robustness assessment of reinforced concrete (RC) framed structures under threat-independent damage scenarios. The procedure is derived from coupled dynamic and non-linear static analyses. Two robustness indicators are defined and the method is applied to two RC frame buildings. The first building was designed for gravity load and earthquake resistance in accordance with Eurocode 8. The second was designed according to the tie force (TF) method, one of the design quantitative procedures for enhancing resistance to progressive collapse. In addition, in order to demonstrate the suitability and applicability of the TF method, the structural robustness and resistance to progressive collapse of the two designs is compared.

Incorporating nonstructural finish effects and construction quality in a performance-based framework for wood shearwall design

  • Kim, Jun Hee;Rosowsky, David V.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.83-100
    • /
    • 2005
  • This paper presents results from a study to extend a performance-based shearwall selection procedure to take into account the contributions of nonstructural finish materials (such as stucco and gypsum wallboard), construction quality issues, and their effects on the displacement performance of engineered wood shearwalls subject to seismic loading. Shearwall performance is evaluated in terms of peak displacements under seismic loading (characterized by a suite of ordinary ground motion records) considering different combinations of performance levels (drift limits) and seismic hazard. Shearwalls are analyzed using nonlinear dynamic time-history analysis with global assembly hysteretic parameters determined by fitting to actual shearwall test data. Peak displacement distributions, determined from sets of analyses using each of the ground motion records taken to characterize the seismic hazard, are postprocessed into performance curves, design charts, and fragility curves which can be used for risk-based design and assessment applications.

Progressive Collapse and Seismic Performance of Twisted Diagrid Buildings

  • Kwon, Kwangho;Kim, Jinkoo
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.223-230
    • /
    • 2014
  • In this study the progressive collapse resisting capacities of tall diagrid buildings were evaluated based on arbitrary column removal scenario, and the seismic load-resisting capacities were investigated through fragility analysis and ATC 63 procedure. As analysis model structures both regular and twisted diagrid structures were designed and their load-resisting capacities were compared by nonlinear static and dynamic analyses. The analysis results showed that the progressive collapse potential of twisted buildings decreased as the twisting angle increased, but the seismic fragility or the probability of failure decreased as the twisting angle increased.

Structural behavior of conventional and buckling restrained braced frames subjected to near-field ground motions

  • Guneyisi, Esra Mete;Ameen, Nali
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.553-570
    • /
    • 2014
  • In this study, nonlinear dynamic analyses were performed in order to evaluate and compare the structural response of different type of moment resisting frame buildings equipped with conventional braces (CBs) and buckling restrained braces (BRBs) subjected to near-field ground motions. For this, the case study frames, namely, ordinary moment-resisting frame (OMRF) and special moment-resisting frame (SMRF) having two equal bays of 6 m and a total height of 20 m were utilized. Then, CBs and BRBs were inserted in the bays of the existing frames. As a brace pattern, diagonal type with different configurations were used for the braced frame structures. For the earthquake excitation, artificial pulses equivalent to Northridge and Kobe earthquake records were taken into account. The results in terms of the inter-story drift index, global damage index, base shear, top shear, damage index, and plastification were discussed. The analysis of the results indicated a considerable improvement in the structural performance of the existing frames with the inclusion of conventional and especially buckling-restrained braces.

Expected damage for SDOF systems in soft soil sites: an energy-based approach

  • Quinde, Pablo;Reinoso, Eduardo;Teran-Gilmore, Amador;Ramos, Salvador
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.577-590
    • /
    • 2019
  • The seismic response of structures to strong ground motions is a complex problem that has been studied for decades. However, most of current seismic regulations do not assess the potential level of damage that a structure may undergo during a strong earthquake. This will happen in spite that the design objectives for any structural system are formulated in terms of acceptable levels of damage. In this article, we analyze the expected damage in single-degree-of-freedom systems subjected to long-duration ground motions generated in soft soil sites, such as those located in the lakebed of Mexico City. An energy-based methodology is formulated, under the consideration of input energy as the basis for the evaluation process, to estimate expected damage. The results of the proposed methodology are validated with damage curves established directly with nonlinear dynamic analyses.

IMPROVED EARTHQUAKE RESISTANT DESIGN OF MULTISTORY BUILDING FRAMES (고층건물 내진설계기법의 개선)

  • Lee, Dong-Guen-;Lee, Seok-Youn-
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.72-78
    • /
    • 1991
  • An improved procedure for earthquake resistant design of multistory building structures is proposed in this study. The effect of gravity load on seismic response of structures is evaluated through nonlinear dynamic analyses of a single story example structure. The presence of gravity load tends to initiate plastic hinge formation in earlier stage of a strong earthquake. However, the effect of gravity load seems to disapper as ground motion is getting stronger. And one of shortcomings in current earthquake resistant codes is overestimation of gravity load effects when earthquake load is applied at the same time so that it may leads to less inelastic deformation or structural damage in upper stories, and inelastic deformation is increased in lower stories. Based on these observation, an improved procedure for earthquake resistant design is derived by reducing the factor for gravity load and inceasing that for seismic load. Structures designed by the proposed design procedure turned out to have increased safety and stability against strong earthquakes.

  • PDF

Pull-in Behavior Analysis in an Optical Disk Drive using Phase Plane and the Evaluations of Effecting Parameters for it (위상평면을 이용한 광디스크 트랙 끌어들임의 동적 해석 및 영향인자의 평가)

  • 최진영;박태욱;양현석;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.894-899
    • /
    • 2004
  • In this paper, the track pull-in behavior analyses in an optical disk drive (ODD) using plane phase is treated and the parameters affecting it are discussed. Track pull-in is the track capture procedure to do track following control and it is key factor to increase data transfer rate. Simulation method, Runge-Kutta method to solve nonlinear equation, is used to evaluate the track pull-in conditions, and the real servo loop parameters are applied in this process to get the more real condition. Finally, the comments for the acquired results are discussed briefly.

  • PDF