• Title/Summary/Keyword: Nonlinear Diffusion Equation

Search Result 52, Processing Time 0.031 seconds

De-blurring Algorithm for Performance Improvement of Searching a Moving Vehicle on Fisheye CCTV Image (어안렌즈사용 CCTV이미지에서 차량 정보 수집의 성능개선을 위한 디블러링 알고리즘)

  • Lee, In-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4C
    • /
    • pp.408-414
    • /
    • 2010
  • When we are collecting traffic information on CCTV images, we have to install the detect zone in the image area during pan-tilt system is on duty. An automation of detect zone with pan-tilt system is not easy because of machine error. So the fisheye lens attached camera or convex mirror camera is needed for getting wide area images. In this situation some troubles are happened, that is a decreased system speed or image distortion. This distortion is caused by occlusion of angled ray as like trembled snapshot in digital camera. In this paper, we propose two methods of de-blurring to overcome distortion, the one is image segmentation by nonlinear diffusion equation and the other is deformation for some segmented area. As the results of doing de-blurring methods, the de-blurring image has 15 decibel increased PSNR and the detection rate of collecting traffic information is more than 5% increasing than in distorted images.

Numerical Solution of Nonlinear Diffusion in One Dimensional Porous Medium Using Hybrid SOR Method

  • Jackel Vui Lung, Chew;Elayaraja, Aruchunan;Andang, Sunarto;Jumat, Sulaiman
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.699-713
    • /
    • 2022
  • This paper proposes a hybrid successive over-relaxation iterative method for the numerical solution of a nonlinear diffusion in a one-dimensional porous medium. The considered mathematical model is discretized using a computational complexity reduction scheme called half-sweep finite differences. The local truncation error and the analysis of the stability of the scheme are discussed. The proposed iterative method, which uses explicit group technique and modified successive over-relaxation, is formulated systematically. This method improves the efficiency of obtaining the solution in terms of total iterations and program elapsed time. The accuracy of the proposed method, which is measured using the magnitude of absolute errors, is promising. Numerical convergence tests of the proposed method are also provided. Some numerical experiments are delivered using initial-boundary value problems to show the superiority of the proposed method against some existing numerical methods.

A Study on Video Object Segmentation using Nonlinear Multiscale Filtering (비선형 다중스케일 필터링을 사용한 비디오 객체 분할에 관한 연구)

  • 이웅희;김태희;이규동;정동석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.1023-1032
    • /
    • 2003
  • Object-based coding, such as MPEG-4, enables various content-based functionalities for multimedia applications. In order to support such functionalities, as well as to improve coding efficiency, each frame of video sequences should be segmented into video objects. In this paper. we propose an effective video object segmentation method using nonlinear multiscale filtering and spatio-temporal information. Proposed method performs a spatial segmentation using a nonlinear multiscale filtering based on the stabilized inverse diffusion equation(SIDE). And, the segmented regions are merged using region adjacency graph(RAG). In this paper, we use a statistical significance test and a time-variant memory as temporal segmentation methods. By combining of extracted spatial and temporal segmentations, we can segment the video objects effectively. Proposed method is more robust to noise than the existing watershed algorithm. Experimental result shows that the proposed method improves a boundary accuracy ratio by 43% on "Akiyo" and by 29% on "Claire" than A. Neri's Method does.

NUMERICAL DISCRETIZATION OF A POPULATION DIFFUSION EQUATION

  • Cho, Sung-Min;Kim, Dong-Ho;Kim, Mi-Young;Park, Eun-Jae
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.3
    • /
    • pp.189-200
    • /
    • 2010
  • A numerical method is proposed and analyzed to approximate a mathematical model of age-dependent population dynamics with spatial diffusion. The model takes a form of nonlinear and nonlocal system of integro-differential equations. A finite difference method along the characteristic age-time direction is considered and primal mixed finite elements are used in the spatial variable. A priori error estimates are derived for the relevant variables.

A computational setting of calcium leaching in concrete and its coupling with continuum damage mechanics

  • Nguyen, V.H.;Nedjar, B.;Torrenti, J.M.
    • Computers and Concrete
    • /
    • v.1 no.2
    • /
    • pp.131-150
    • /
    • 2004
  • We present in this work a coupled phenomenological chemo-mechanical model that represents the degradation of concrete-like materials. The chemical behaviour is described by the nowadays well known simplified calcium leaching approach. And the mechanical damage behaviour is described by a continuum damage model which involves the gradient of the damage quantity. The coupled nonlinear problem at hand is addressed within the context of the finite element method. For the equation governing the calcium dissolution-diffusion part of the problem, special care is taken to treat the highly nonlinear calcium conductivity and solid calcium functions. The algorithmic design is based on a Newton-type iterative scheme where use is made of a recently proposed relaxed linearization procedure. And for the equation governing the damage part of the problem, an augmented Lagrangian formulation is used to take into account the damage irreversibility constraint. Finally, numerical simulations are compared with experimental results on cement paste.

LONG-TIME BEHAVIOR OF SOLUTIONS TO A NONLOCAL QUASILINEAR PARABOLIC EQUATION

  • Thuy, Le Thi;Tinh, Le Tran
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1365-1388
    • /
    • 2019
  • In this paper we consider a class of nonlinear nonlocal parabolic equations involving p-Laplacian operator where the nonlocal quantity is present in the diffusion coefficient which depends on $L^p$-norm of the gradient and the nonlinear term is of polynomial type. We first prove the existence and uniqueness of weak solutions by combining the compactness method and the monotonicity method. Then we study the existence of global attractors in various spaces for the continuous semigroup generated by the problem. Finally, we investigate the existence and exponential stability of weak stationary solutions to the problem.

An Analytical Solution of the Vertically One-dimensional Convection-Diffusion Equation for the Determination of Local Suspended Sediment Concentration (국지 부유퇴적물 농도의 결정을 위한 연직1차원 이류확산 방정식의 해석해)

  • Jung, Kyung-Tae;Jin, Jae-Youll;Kang, Hyoun-Woo;Cho, Hong-Yeon;Kim, Mee-Kyung;John Noye
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.208-215
    • /
    • 2003
  • Convective-diffusion equations appear in various disciplines such as hydrology, chemical engineering and oceanography dealing with the transport problem of scalar quantities. Since it is nonlinear, numerical methods are generally used to obtain its solution. Very limited number of analytical solutions are available usually in cases when the convective velocity is constant or has a simple functional form (for some collection of the solutions, see Noye, 1987). There is however a continuing need to develop analytical solutions because of its practical importance. Analytical solutions of the convection-diffusion equation are valuable not only for the better understanding on the transport process but the verification of numerical schemes. (omitted)

  • PDF

Analytical Solutions for Predicting Movement Rate of Submerged Mound (수중둔덕의 이동율 예측을 위한 해석해)

    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.4
    • /
    • pp.165-173
    • /
    • 1998
  • Analytical solutions to predict the movement rate of submerged mound are derived using the convection coefficient and the joint distribution function of wave heights and periods. Assuming that the sediment is moved onshore due to the velocity asymmetry of Stokes' second order nonlinear wave theory, the micro-scale bedload transport equation is applied to the sediment conservation. The nonlinear convection-diffusion equation can then be obtained which governs the migration of submerged mound. The movement rate decreases exponentially with increasing the water depth, but the movement rate tends to increase as the spectral width parameter, $ u$ increases. In comparison of the analytical solution with the measured data, it is found that the analytical solution overestimates the movement rate. However, the agreement between the analytical solution and the measured data is encouraging since this over-estimation may be due to the inaccuracy of input data and the limitation of sediment transport model. In particular, the movement rates with respect to the water depth predicted by the analytical solution are in very good agreement with the estimated result using the discritization technique with the hindcast wave data.

  • PDF

A mathematical model of blood flow and convective diffusion processes in constricted bifurcated arteries

  • Chakravarty S.;Sen S.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.2
    • /
    • pp.51-65
    • /
    • 2006
  • Of concern in the present theoretical investigation is the study of blood flow and convection-dominated diffusion processes in a model bifurcated artery under stenotic conditions. The geometry of the bifurcated arterial segment having constrictions in both the parent and its daughter arterial lumen frequently appearing in the diseased arteries causing malfunction of the cardiovascular system, is constructed mathematically with the introduction of suitable curvatures at the lateral junction and the flow divider. The streaming blood contained in the bifurcated artery is treated to be Newtonian. The flow dynamical analysis applies the two-dimensional unsteady incompressible nonlinear Wavier-Stokes equations for Newtonian fluid while the mass transport phenomenon is governed by the convection diffusion equation. The motion of the arterial wall and its effect on local fluid mechanics is, however, not ruled out from the present model. The main objective of this study is to demonstrate the effects of constricted flow characteristics and the wall motion on the wall shear stress, the concentration profile and on the mass transfer. The ultimate numerical solutions of the coupled flow and diffusion processes following a radial coordinate transformation are based on an appropriate finite difference technique which attain appreciable stability in both the flow phenomena and the convection-dominated diffusion processes.

Computation of viscoelastic flow using neural networks and stochastic simulation

  • Tran-Canh, D.;Tran-Cong, T.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.4
    • /
    • pp.161-174
    • /
    • 2002
  • A new technique for numerical calculation of viscoelastic flow based on the combination of Neural Net-works (NN) and Brownian Dynamics simulation or Stochastic Simulation Technique (SST) is presented in this paper. This method uses a "universal approximator" based on neural network methodology in combination with the kinetic theory of polymeric liquid in which the stress is computed from the molecular configuration rather than from closed form constitutive equations. Thus the new method obviates not only the need for a rheological constitutive equation to describe the fluid (as in the original Calculation Of Non-Newtonian Flows: Finite Elements St Stochastic Simulation Techniques (CONNFFESSIT) idea) but also any kind of finite element-type discretisation of the domain and its boundary for numerical solution of the governing PDE's. As an illustration of the method, the time development of the planar Couette flow is studied for two molecular kinetic models with finite extensibility, namely the Finitely Extensible Nonlinear Elastic (FENE) and FENE-Peterlin (FENE-P) models.P) models.