• Title/Summary/Keyword: Nonlinear Design

Search Result 4,496, Processing Time 0.033 seconds

Design and strength analysis of lifting lugs (Lifting lug의 설계 절차 및 강도해석 방법에 대한 고찰)

  • Seo, Sun-Kee;Kim, Kyung-Rae;Eom, Sung-Sub;Seo, Yong-Seok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.51-54
    • /
    • 2011
  • This paper presents methods for design and strength analysis of lifting lugs utilized in assembling, erection, and turning over of ship structures. Lifting lugs are designed in accordance with ASME BTH-1-2008; Design of Below-the-Hook Lifting Devices. Experimental tests for fillet welded joints were conducted to design weld size of lifting lugs and under-structures. The nonlinear finite element method, using MSC.Marc software, is employed for limit state assessment of lifting lugs in static loading conditions. The analysis considers nonlinearities in material properties and contact between lifting lug and pin.

  • PDF

Model Predictive Observer Design with Feedback Genetic Algorithm (피드백 유전알고리즘 모델 예측 관측기 설계)

  • Park, Jong-Chon;Hong, Jin-Man;Lee, Hong-Gi
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.977-980
    • /
    • 2007
  • Observer design for the nonlinear systems is known to be difficult in general. This paper suggests a feedback GA-based model predictive observer for the observable systems. Feedback concept makes on-line design possible for the cases including observer design, where GA is implemented repeatedly every time instant. The effectiveness of our observer is shown by simulation.

Fuzzy Controller Design by Means of Genetic Optimization and NFN-Based Estimation Technique

  • Oh, Sung-Kwun;Park, Seok-Beom;Kim, Hyun-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.362-373
    • /
    • 2004
  • In this study, we introduce a noble neurogenetic approach to the design of the fuzzy controller. The design procedure dwells on the use of Computational Intelligence (CI), namely genetic algorithms and neurofuzzy networks (NFN). The crux of the design methodology is based on the selection and determination of optimal values of the scaling factors of the fuzzy controllers, which are essential to the entire optimization process. First, tuning of the scaling factors of the fuzzy controller is carried out, and then the development of a nonlinear mapping for the scaling factors is realized by using GA based NFN. The developed approach is applied to an inverted pendulum nonlinear system where we show the results of comprehensive numerical studies and carry out a detailed comparative analysis.

A Study on the preliminary Design of Suspension Bridge with Exiting Data (기존자료를 이용한 현수교의 예비설계에 관한 연구)

  • 하성문;신기용;계만수;정진환;김성도
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.133-140
    • /
    • 2000
  • A suspension bridge with long span is distinguished by aesthetic point of view, but it is difficult to analyze the structural behaviors due to its geometric nonlinear characteristics. Futhermore, because the chance of design such special bridges is very rare, the assumption of initial dimensions of geometrical shapes and structural sections may be much difficult also. In this paper, the brief data base on the important structural dimensions of suspension bridges is constructed after the informations on existing suspension bridges are collected and classified from various texts and internet web sites. Therefore this data base may be utilized very easily by the designers who tries to design such bridges in the preliminary design step. Also the static geometric nonlinear analysis program is added to assist the designer in simple decision of safety check for assumed dimensions.

  • PDF

Ultimate behavior of reinforced concrete cooling tower: Evaluation and comparison of design guidelines

  • Noh, Hyuk-Chun;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.223-240
    • /
    • 2006
  • Taking into account the geometrical and material nonlinearities, an ultimate behavior of reinforced concrete cooling tower shell in hyperbolic configuration is presented. The design wind pressures suggested in the guidelines of the US (ACI) and Germany (VGB), with or without the effect of internal suction, are employed in the analysis to examine the qualitative and quantitative characteristics of each design wind pressure. The geometrical nonlinearity is incorporated by the Green-Lagrange strain tensor. The nonlinear features of concrete, such as the nonlinear stress-strain relation in compression, the tensile cracking with the smeared crack model, an effect of tension stiffening, are taken into account. The biaxial stress state in concrete is represented by an improved work-hardening plasticity model. From the perspective of quality of wind pressures, the two guidelines are determined as highly correlated each other. Through the extensive analysis on the Niederaussem cooling tower in Germany, not only the ultimate load is determined but also the mechanism of failure, distribution of cracks, damage processes, stress redistributions, and mean crack width are examined.

Simplified equations for Vierendeel design calculations of composite beams with web openings

  • Panedpojaman, Pattamad
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.401-416
    • /
    • 2018
  • Composite beams with web openings are vulnerable to Vierendeel bending failure. The available methods provide quite conservative estimates of Vierendeel bending resistance. An alternative design method to compute the resistance was proposed in this study, based on quadratic nonlinear interactions of normalized shear force, axial force and Vierendeel bending moment. The interactions of the top and bottom Tee section must satisfy mutual conditions to prevent the Vierendeel failure. The normalized shear force and Vierendeel bending moment of the composite part were used instead in the top Tee interaction. The top Tee axial force was computed based on force equilibrium. Based on a rigid-plastic model, the composite resistance is estimated using an effective slab width of the vertical shear resistance. On using the proposed method, nonlinear reductions due to shear loads and axial forces are not required, in contrast to prior methods. The proposed method was validated against experiments from literature. The method limitations and accuracy as well as the Vierendeel behavior were investigated by finite element simulations, with varied composite beam parameters. The proposed design loads are less conservative than earlier estimates and deviate less from the simulations.

Design of HCBKA-Based IT2TSK Fuzzy Prediction System (HCBKA 기반 IT2TSK 퍼지 예측시스템 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1396-1403
    • /
    • 2011
  • It is not easy to analyze the strong nonlinear time series and effectively design a good prediction system especially due to the difficulties in handling the potential uncertainty included in data and prediction method. To solve this problem, a new design method for fuzzy prediction system is suggested in this paper. The proposed method contains the followings as major parts ; the first-order difference detection to extract the stable information from the nonlinear characteristics of time series, the fuzzy rule generation based on the hierarchically classifying clustering technique to reduce incorrectness of the system parameter identification, and the IT2TSK fuzzy logic system to reasonably handle the potential uncertainty of the series. In addition, the design of the multiple predictors is considered to reflect sufficiently the diverse characteristics concealed in the series. Finally, computer simulations are performed to verify the performance and the effectiveness of the proposed prediction system.

Adaptive Output Feedback Control of Uncertain Nonlinear Systems with Time-Varying Parameters (시변 파라메터를 갖는 불확실 비선형 시스템의 적응 출력궤환 제어)

  • Ahn, Choon-Ki;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1943-1945
    • /
    • 2001
  • In this paper, we present an adaptive output feedback control scheme for a class of uncertain nonlinear output-feedback form with time-varying parameters to which adaptive observer backstepping technique may not be applicable directly. In observer design, with the introduction of design function, we can deal with time-varying parameters in a very effective way. By the presented scheme, estimation error can be tuned to a desired small region around the origin via the design constants. Consequently, the observer with the presented design functions and the backstepping methodology achieve a robust regulation of the output tracking error while maintaining boundedness of all the signals and states.

  • PDF

Robust Tracking Controller Design for TS Fuzzy System with Uncertaintie (불확실한 TS 퍼지 시스템을 위한 강인한 추종 제어기의 설계)

  • Jeon, Sang-Won;Lee, Sang-Jun;Lee, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1955-1957
    • /
    • 2001
  • This paper propose the design method of robust tracking controller for nonlinear TS fuzzy system with uncertainties. The robust tracking controller design is presented by constraint of robust stability for nonlinear system. A sufficient condition of the robust stability is presented by LMI(Linear Matrix Inequality) soltuion in the sense of Lyapunov for TS fuzzy system with uncertainties. The effectiveness of the proposed robust tracking con design is demonstrated through a numerical simulatio.

  • PDF

Damage Estimation and LCC Optimal Design of Seismic Isolated Bridges considering nonlinearities of Pier and Isolator (교각 및 지진격리장치의 비선형성을 고려한 지진격리교량의 손상평가 및 LCC 최적설계)

  • 고현무;함대기;신정환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.344-351
    • /
    • 2003
  • In order to consider the characteristics of nonlinear dynamic responses of seismic isolated bridges reasonably, piers and isolators are modeled as a 2-DOF bilinear system. Then nonlinear time-history earthquake response analysis is accomplished many artificial input ground motions which were generated to reflect the characteristics of earthquakes. Damage probabilities and failure probabilities of each structural elements of the brides are calculated by using Monte-Carlo simulation method. Based on LCC evaluation considering various cost items of direct/indirect damage costs, the optimal design method of seismic isolated bridges is proposed. By using a sensitivity analysis about the design variables and a cost effectiveness evaluation in the viewpoint of LCC, the validity and the adequacy of proposed optimal design method are verified.

  • PDF