• Title/Summary/Keyword: Nonlinear Design

Search Result 4,468, Processing Time 0.032 seconds

Size-Reduced Ring-Hybrid Coupler Using Phase-Inverting Ultra-Wideband Transitions and Its Frequency Doubler Application (초광대역 위상 역전 전이 구조를 이용한 소형화된 링 하이브리드 결합기 및 주파수 체배기 응용)

  • Song, Sun-Young;Kim, Young-Gon;Park, Jin-Hyun;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.1037-1044
    • /
    • 2010
  • In this paper, a new size-reduced, wideband ring-hybrid coupler is presented, and a design of a planar single-balanced doubler using the ring-hybrid is shown. This ring-hybrid coupler employs a pair of ultra-wideband transitions for phase inversion, which consists of in-phase and out of-phase transitions providing a good amplitude and phase balances for wide frequency ranges. The implemented ring-hybrid is 65 % smaller than conventional ring-hybrids, and provides 92.5 % and 81.3 % bandwidth at $\sum$ and $\Delta$ ports, respectively. Thanks to good amplitude and phase balances over wide bandwidth, the ring-hybrid can be applied to implement various balanced components. The implemented single-balanced doubler utilizing the ring-hybrid exhibits typical conversion loss of 10.5 dB for the output frequency range of 4~12 GHz with fundamental suppression level of 30 dB. The performance was also well-predicted with the nonlinear circuit simulation.

Seismic Behavior and Performance Evaluation of Uckling-restrained Braced Frames (BRBFs) using Superelastic Shape Memory Alloy (SMA) Bracing Systems (초탄성 형상기억합금을 활용한 좌굴방지 가새프레임 구조물의 지진거동 및 성능평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.875-888
    • /
    • 2013
  • The researches have recently progressed toward the use of the superelastic shape memory alloys (SMAs) to develop new smart control systems that reduce permanent deformation occurring due to severe earthquake events and that automatically recover original configuration. The superelastic SMA materials are unique metallic alloys that can return to undeformed shape without additional heat treatments only after the removal of applied loads. Once the superelastic SMA materials are thus installed at the place where large deformations are likely to intensively occur, the structural system can make the best use of recentering capabilities. Therefore, this study is intended to propose new buckling-restrained braced frames (BRBFs) with superelastic SMA bracing systems. In order to verify the performance of such bracing systems, 6-story braced frame buildings were designed in accordance with the current design specifications and then nonlinear dynamic analyses were performed at 2D frame model by using seismic hazard ground motions. Based on the analysis results, BRBFs with innovative SMA bracing systems are compared to those with conventional steel bracing systems in terms of peak and residual inter-story drifts. Finally, the analysis results show that new SMA bracing systems are very effective to reduce the residual inter-story drifts.

Dynamics modeling and performance analysis for the underwater glider (수중 글라이더의 운동특성을 고려한 동역학 모델링 및 운동성능 해석)

  • Nam, Keon-Seok;Bae, Jae-Hyeon;Jeong, Sang-Ki;Lee, Shin-Je;Kim, Joon-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.709-715
    • /
    • 2015
  • Underwater gliders do not typically have separate propellers for forward motion. They generate propulsive forces based on the difference between their buoyancy and gravity. They can control the volume from the buoyancy engine to adjust the propulsive force. In addition, the attitude of the underwater glider is controlled by a rubberless motion controller. The motion controller can change the mass center and moment of inertia of the inner moving mass. Owing to the change in these parameters, the attitude of the underwater glider is changed. In this study, we derive nonlinear, six degree of freedom (DOF) mathematical models for the motion controller and buoyancy engine. Using these equations, we perform dynamic simulations of the proposed underwater glider, and verify the suitability of the design and dynamic performances of the proposed underwater glider. We then perform the motion control simulation for the pitch and roll angle, and analyze the dynamic performance according to the pitch and roll angles.

A study on the optimum cutter spacing ratio according to penetration depth using decision tree-based and SVM regressions (의사결정나무 기반 회귀분석과 SVM 회귀분석을 이용한 커터 관입깊이에 따른 최적 커터간격 비 연구)

  • Lee, Gi-Jun;Ryu, Hee-Hwan;Kwon, Tae-Hyuk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.501-513
    • /
    • 2020
  • Cutter cutting tests for the cutter placement in the cutter head are being conducted through various studies. Although the cutter spacing at the minimum specific energy is mainly reflected in the cutter head design, since the optimum cutter spacing at the same cutter penetration depth varies depending on the rock conditions, studies on deciding the optimum cutter spacing should be actively conducted. The machine learning techniques such as the decision tree-based regression model and the SVM regression model were applied to predict the optimum cutter spacing ratio for the nonlinear relationship between cutter penetration depth and cutter spacing. Since the decision tree-based methods are greatly influenced by the number of data, SVM regression predicted optimum cutter spacing ratio according to the penetration depth more accurately and it is judged that the SVM regression will be effectively used to decide the cutter spacing when designing the cutter head if a large amount of data of the optimum cutter spacing ratio according to the penetration depth is accumulated.

PVC Classification based on QRS Pattern using QS Interval and R Wave Amplitude (QRS 패턴에 의한 QS 간격과 R파의 진폭을 이용한 조기심실수축 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.825-832
    • /
    • 2014
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. Even if some methods have the advantage in low complexity, but they generally suffer form low sensitivity. Also, it is difficult to detect PVC accurately because of the various QRS pattern by person's individual difference. Therefore it is necessary to design an efficient algorithm that classifies PVC based on QRS pattern in realtime and decreases computational cost by extracting minimal feature. In this paper, we propose PVC classification based on QRS pattern using QS interval and R wave amplitude. For this purpose, we detected R wave, RR interval, QRS pattern from noise-free ECG signal through the preprocessing method. Also, we classified PVC in realtime through QS interval and R wave amplitude. The performance of R wave detection, PVC classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30 PVC. The achieved scores indicate the average of 99.02% in R wave detection and the rate of 93.72% in PVC classification.

A Study on the Flow and Dispersion in the Coastal Unconfined Aquifer (Development and Application of a Numerical Model) (해안지역 비피압 충적 대수층에서의 흐름 및 분산(수치모형의 개발 및 적용))

  • Kim, Sang Jun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.61-72
    • /
    • 2016
  • In Korea, the aquifers at the coastal areas are mostly shallow alluvial unconfined aquifers. To simulate the flow and dispersion in unconfined aquifer, a FDM model has been developed to solve the nonlinear Boussinesq equation. Related analysis and verification have been executed. The iteration method is used to solve the nonlinearity, and the model shows 3-D shape because it is a 2-D y model that consider the undulation of water table and bottom. For the verification of the model, the output of flow module is compared to the 1-D analytic solution of Lee (1989) which have the drawdown or uplift boundary condition, and the two results show almost the same value. and the mass balance of dispersion module shows about 10% error. The developed model can be used for the analysis and design of the flow and dispersion in the unconfined aquifers. The model has been applied to the estuary area of Ssangcheon watershed, and the parameters have been deduced as a result : hydraulic conductivity is 90 m/day, and longitudinal dispersivity is 15 m. And the analysis with these parameters shows that the wells are situated in the influence circle of each others except for No. 7 well. Groundwater discharge to sea is $3700m^3/day$. And the chlorine ion ($cl^-$) concentration at the pumping wells increase at least 1000 mg/L if groundwater dam is not exist, so the groundwater dam plays an important role for the prevention of sea water intrusion.

Design of Summer Very Short-term Precipitation Forecasting Pattern in Metropolitan Area Using Optimized RBFNNs (최적화된 다항식 방사형 기저함수 신경회로망을 이용한 수도권 여름철 초단기 강수예측 패턴 설계)

  • Kim, Hyun-Ki;Choi, Woo-Yong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.533-538
    • /
    • 2013
  • The damage caused by Recent frequently occurring locality torrential rains is increasing rapidly. In case of densely populated metropolitan area, casualties and property damage is a serious due to landslides and debris flows and floods. Therefore, the importance of predictions about the torrential is increasing. Precipitation characteristic of the bad weather in Korea is divided into typhoons and torrential rains. This seems to vary depending on the duration and area. Rainfall is difficult to predict because regional precipitation is large volatility and nonlinear. In this paper, Very short-term precipitation forecasting pattern model is implemented using KLAPS data used by Korea Meteorological Administration. we designed very short term precipitation forecasting pattern model using GA-based RBFNNs. the structural and parametric values such as the number of Inputs, polynomial type,number of fcm cluster, and fuzzification coefficient are optimized by GA optimization algorithm.

Temperature-Induced Stresses and Deformation in Composite Box Girder Bridges (합성 박스형 교량의 온도에 의한 응력 및 변형)

  • Chang, Sung Pil;Im, Chang Kyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.659-672
    • /
    • 1997
  • Thermal response induced from nonlinear temperature distribution in composite box gilder bridges depends on several variables(environmental conditions, physical and material properties, location and orientation of bridge, and cross-section geometry). In this paper, parametric study are conducted in order to find the effects of variations of seasons, location and orientation of bridge, sectional geometry and some material properties on the axial deformation, curvature and stresses in composite box girder bridge. A two-dimensional transient finite element model to conduct this parametric studies is briefly presented. Firstly, the effects of the parameters on the diurnal variation of curvature are considered, and for the time of maximum curvature, on the distribution of temperature and stresses of composite box girder sectional are considered. Finally, some considerations about the influence of the parameters on the daily maximum values of axial deformation, curvature and stresses are carried out. The influence of thermal effect on structures is important as much as the influence of live or dead load in some cases. In the design of steel composite bridges, the thermal stresses calculated on the supposition that the temperature difference between the concrete slab and steel girder is $10^{\circ}C$ and the temperature distributions are uniform in concrete slab and steel girder can be underestimated.

  • PDF

Seismic Performance of High Strength Steel(HSA800) Beam-to-Column Connections with Improved Horizontal Stiffener (개량수평스티프너를 보강한 고강도강(HSA800) 접합부 내진성능평가)

  • Oh, Sang Hoon;Park, Hae Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.361-373
    • /
    • 2014
  • As the height and beam span of buildings built in the construction market increase, increasingly higher quality is being required of the construction materials. In response to this trend, 800MPa tensile strength class steel was developed in domestic company. Currently, experiments applying flexural member, compression member, and connections are continuously conducted, but a design guideline for high strength steel has yet to be established. Among those construction materials, for the high strength steel beam-to-column connections, the evaluation of implementing ductile connections for the high strength steel beam-to-column connections is producing pessimistic results and the number of related researches is inadequate because of the high yield ratio, which is the characteristic of high strength steel. This study on implementation of ductile connections made of high strength steel was conducted using the connection detail as the variable, for the purpose of enhancing the deformation capacity of high strength steel beam-to-column connections. Cyclic loading test and nonlinear finite element analysis were conducted with full-scale mock-up connection models with the applied connection details. As a result, the structural performance of high-strength steel beam-to-column connection with presented detail was contented with demand of Special Moment Frames of KBC standard.

The Analysis of the Dimensions of Affection Structure and Hand Movements (손동작과 정서 차원 분석)

  • Yoo Sang;Han Kwang-Hee;Cho Kyung-Ja
    • Science of Emotion and Sensibility
    • /
    • v.9 no.2
    • /
    • pp.119-132
    • /
    • 2006
  • The dimensions of affection structure from hand movements was developed for the purpose of understanding relationship between affective words and physical factors to apply it to computing environment. To analyze hand movements, three dimensions -direction, time, weight- were found through reconstructing sub-properties of Laban Movement Analysis. The direction dimension has five freedoms of movement (horizontal, vertical, sagittal, circular, shaking) while the time and weight dimensions both have two sub categories each, (sudden, sustained), (light, strong) respectively. By factorial design using the three dimensions, twenty movement were videotaped. Participants rated a list of fifty korean affective words on each twenty movements. The results were studied by nonlinear principal component analysis. The results suggested that time and weight dimensions are closely related with arousal level dimension of affection. Strong and sudden movements associated with highly aroused affection, while light and sustained movements associated with the opposite affection. The direction sub-dimensions were found to be associated with the kinds of affection. Linear movements like horizontal, vortical and sagittal direction were correlated to highly aroused negative affection. Circular movements were found to correlate closely by fun and delight on the graph, while shaking movements were correlated to anxiety and impatience. These results imply that the dimensions of affection structure and sub-properties of hand movements are closely connected with each other.

  • PDF