• Title/Summary/Keyword: Nonlinear Design

Search Result 4,496, Processing Time 0.031 seconds

Design of Fuzzy PI Controllers for the Temperature Control of Soldering Systems (솔더링 시스템의 온도 제어를 위한 퍼지 PI 제어기 설계)

  • Oh, Kabsuk;Kang, Geuntaek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.325-333
    • /
    • 2016
  • This paper proposes controller design algorithms for a ceramic soldering iron temperature control system, and reports their effectiveness in a control experiment. Because the responses of the ceramic soldering iron temperature to the control input are non-linear and very slow, precise modeling and controller design is difficult. In this study, the temperature characteristics of a ceramic soldering iron are represented by TSK fuzzy models consisting of TSK fuzzy rules. In the fuzzy rules, the premise variable is the control input and the consequences are the transfer functions. The transfer functions in the fuzzy model were obtained from the step input responses. As the responses of the ceramic soldering iron temperature are very slow, it is difficult to obtain the complete step input responses. This paper proposes a genetic algorithm to obtain the transfer functions from an incomplete step input responses, and showed its effectiveness in examples. This paper also reports a fuzzy controller design method from the TSK fuzzy model and examples. The proposed methods were applied to the temperature control experiments of ceramic iron. The TSK fuzzy model consisted of 7 TSK fuzzy rules, and the consequences were PI controllers. The experimental results of the proposed fuzzy PI controller were superior to the linear controller and were as good as in previous studies using a fuzzy PID controller.

A Single Allocation Hub Network Design Model for Intermodal Freight Transportation (단일할당 복합운송 허브 네트워크 설계 모형 개발)

  • Kim, Dong-Gyu;Gang, Seong-Cheol;Park, Chang-Ho;Go, Seung-Yeong
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.129-141
    • /
    • 2009
  • Intermodal freight transportation is defined as the movement of freight from origins to destinations by two or more transportation modes. When implemented in hub networks, it could enhance the efficiency of the networks because consolidated flows are transported by more suitable modes and technologies. In spite of this advantage, the intermodal hub network design problem has received limited attention in the literature partly because of the complex nature of the problem. This paper aims to develop an optimization model for designing intermodal hub networks with sin91e allocation strategy. The model takes into account various cost components of intermodal hub networks including transportation, stationary inventory, and service delay costs. Moreover, using transport frequency variables, it is capable of endogenously determining the transportation economies of scale achieved by consolidation of flows. As such, the model is able to realistically represent the characteristics of intermodal hub networks in practice. Since the model Is a complicated nonlinear integer programming problem, we perform model simplification based on the analytical study of the model, which could facilitate the development of solution algorithms in the future. We expect that this study contributes to the design of intermodal hub networks as well as to the assessment of existing logistics systems.

A Bayesian GLM Model Based Regional Frequency Analysis Using Scaling Properties of Extreme Rainfalls (극치자료계열의 Scaling 특성과 Bayesian GLM Model을 이용한 지역빈도해석)

  • Kim, Jin-Young;Kwon, Hyun-Han;Lee, Byung-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.29-41
    • /
    • 2017
  • Design rainfalls are one of the most important hydrologic data for river management, hydraulic structure design and risk analysis. The design rainfalls are first estimated by a point frequency analysis and the IDF (intensity-duration-frequency) curve is then constructed by a nonlinear regression to either interpolate or extrapolate the design rainfalls for other durations which are not used in the frequency analysis. It has been widely recognised that the more reliable approaches are required to better account for uncertainties associated with the model parameters under circumstances where limited hydrologic data are available for the watershed of interest. For these reasons, this study developed a hierarchical Bayesian based GLM (generalized linear model) for a regional frequency analysis in conjunction with a scaling function of the parameters in probability distribution. The proposed model provided a reliable estimation of a set of parameters for each individual station, as well as offered a regional estimate of the parameters, which allow us to have a regional IDF curve. Overall, we expected the proposed model can be used for different aspects of water resources planning at various stages and in addition for the ungaged basin.

Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine

  • Ke, Shitang;Dong, Yifan;Zhu, Rongkuan;Wang, Tongguang
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.433-450
    • /
    • 2020
  • The strong turbulence characteristic of typhoon not only will significantly change flow field characteristics surrounding the large-scale wind turbine and aerodynamic force distribution on surface, but also may cause morphological evolution of coast dune and thereby form sand storms. A 5MW horizontal-axis wind turbine in a wind power plant of southeastern coastal areas in China was chosen to investigate the distribution law of additional loads caused by wind-sand coupling movement of coast dune at landing of strong typhoons. Firstly, a mesoscale Weather Research and Forecasting (WRF) mode was introduced in for high spatial resolution simulation of typhoon "Megi". Wind speed profile on the boundary layer of typhoon was gained through fitting based on nonlinear least squares and then it was integrated into the user-defined function (UDF) as an entry condition of small-scaled CFD numerical simulation. On this basis, a synchronous iterative modeling of wind field and sand particle combination was carried out by using a continuous phase and discrete phase. Influencing laws of typhoon and normal wind on moving characteristics of sand particles, equivalent pressure distribution mode of structural surface and characteristics of lift resistance coefficient were compared. Results demonstrated that: Compared with normal wind, mesoscale typhoon intensifies the 3D aerodynamic distribution mode on structural surface of wind turbine significantly. Different from wind loads, sand loads mainly impact on 30° ranges at two sides of the lower windward region on the tower. The ratio between sand loads and wind load reaches 3.937% and the maximum sand pressure coefficient is 0.09. The coupling impact effect of strong typhoon and large sand particles is more significant, in which the resistance coefficient of tower is increased by 9.80% to the maximum extent. The maximum resistance coefficient in typhoon field is 13.79% higher than that in the normal wind field.

Lightweight Design of an Outer Tie Rod Using Meta-Model Based Optimization Technique (메타모델기반최적화를 이용한 아우터타이로드의 경량화 설계)

  • Kim, Young-Jun;Park, Soon-Hyeong;Lee, Kwon-Hee;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7754-7760
    • /
    • 2015
  • The outer tie rod is one of the part of steering system, the optimization process was executed to find the lightweight design. The inner tie rod was considered in the optimum design of an outer tie rod. it could be closer to the test condition than in the case of considering outer tie rod only. The aluminum forging material was considered as a weight reduction proposal. The target of optimization was the shape of the minimum weight to resist at the load of buckling. RSM and Kriging interpolation method were applied as a optimization method to consider the nonlinear shape optimization problem. Then, 16.3%, 16.6% of weight reduction was obtained from the result comparing with that of the initial model. The results of meta model optimization was compared with that of finite element method. The error values of buckling load estimation were 2.6%, 2.04%. and those of weight estimation were 0.17%, 0.13%. Therefore, it seemed that the result of Kriging model could be obtained closer to optimum value than that of RSM model.

Curvature Linear Equation of a Two-Mirror System with a Finite Object Distance (유한 물체 거리를 갖는 2 반사경계의 곡률 선형 방정식)

  • Lee, Jung-Gee;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.423-427
    • /
    • 2005
  • In this paper, we propose easily tooling method for Seidel third order aberration, which are not well utilized in actual design process due to the complication of mathematical operation and the difficulty of understanding Seidel third order aberration theory, even though most insightful and systematic means in pre-designing for the initial data of optimization. First, using paraxial ray tracing and Seidel third order aberration theory, spherical aberration coefficient is derived for a two-mirror system with a finite object distance. The coefficient, which is expressed as a higher-order nonlinear equation, consists of design parameters(object distance, two curvatures, and inter-mirror distance) and effective focal length(EFL). Then, the expressed analytical equation is solved by using a computer with numerical analysis method. From the obtained numerical solutions satisfying the nearly zero coefficient condition($<10^{-6}$), linear fitting process offers a linear relationship called the curvature linear equation between two mirrors. Consequently, this linear equation has two worthy meanings: the equation gives a possibility to obtain initial design data for optimization easily. And the equation shows linear relationship to a two-mirror system with a finite object distance under the condition of corrected third order spherical aberration.

Evaluation of Applicability of Impulse function-based Algorithm for Modification of Ground Motion to Match Target Response Spectrum (Impulse 함수 기반 목표응답스펙트럼 맞춤형 지진파 보정 알고리즘의 적용성 평가)

  • Kim, Hyun-Kwan;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.4
    • /
    • pp.53-63
    • /
    • 2011
  • Selection or generation of appropriate input ground motion is very important in performing a dynamic analysis. In Korea, it is a common practice to use recorded strong ground motions or artificial motions. The recorded motions show non-stationary characteristics, which is a distinct property of all earthquake motions, but have the problem of not matching the design response spectrum. The artificial motions match the design spectrum, but show stationary characteristics. This study generated ground motions that preserve the non-stationary characteristics of a real earthquake motion, but also matches the design spectrum. In the process, an impulse function-based algorithm that adjusts a given time series in time domain such that it matches the target response spectrum is used. Application of the algorithm showed that it can successfully adjust any recorded motions to match the target spectrum and also preserve the non-stationary characteristics. The modified motions are used to perform a series of nonlinear site response analyses. It is shown that the results using the adjusted motions result in more reliable estimates of ground vibration. It is thus recommended that the newly adjusted motions be used in practice instead of original recorded motions.

Nonlinear Finite Element Analysis of the Reinforced Concrete Panel using High-Strength Reinforcing Bar (고강도 철근을 사용한 철근콘크리트 패널의 비선형 유한요소해석)

  • Cheon, Ju-Hyun;Seong, Dae-Jung;Cho, Hong-Jae;Cho, Jae-Yeol;Shin, Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.481-488
    • /
    • 2015
  • The purpose of this study is to provide analytical method to reasonably predict the overall behavior up to destruction of reinforced concrete panel specimens using high-strength reinforcing bar. A total of 12 specimens of reinforced concrete panels with a wall thickness one-third the size of the actual nuclear containment structures under various loading conditions and design parameters were selected and the analysis was performed using a non-linear finite element analysis program (RCAHEST) was developed by the authors. The mean and coefficient of variation for shear strength at cracking point and maximum shear strength from the experiment and analysis results was predicted 1.03 and 12%, 0.97 and 9%, respectively. For the shear strain at the maximum shear strength from the experiment and analysis results was predicted 0.96 and 30%, respectively. Based on the results, the analysis program that was applied newly modified constitutive equation in this study is judged as having a relatively high reliability for the analysis results.

Development of Buckling Restrained Brace Laterally Supported by Semicircular Springs (반원형 스프링으로 횡지지된 건식형 좌굴방지가새의 개발)

  • Park, Keum Sung;Lee, Sang Sup;Hong, Sung Yub;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.549-558
    • /
    • 2014
  • Buckling restrained braces(BRBs) developed as a seismic protection element, hysteretic damper, have been investigated in America and Japan mainly. BRBs are composed of a steel core and concrete-filled steel casing. It is one of the major causes of drop in productivity to fill the steel casing with concrete. To improve this problem, the BRB is introduced in which the steel core is restrained with a pair of semicircular springs. In this paper, the numerical and analytical investigation about the desirable configuration for a semicircular spring is presented. Firstly, the stiffness and strength of semicircular spring is determined theoretically to buckle into a very high-order modes. Then, the required stiffness and strength are calculated under the practical design conditions and considered as reference values to find a proper configuration. The material strength and thickness of semicircular spring are chose from the finite element analysis for 5 semicircular springs with varying height. Finally, the nonlinear buckling analysis of BRB with proper semicircular springs shows that the bucking strength of the whole BRB is very similar to the strength of steel core with length between semicircular springs.

Structural Analysis of a Suction Pad for a Removable Bike Carrier using Computational and Experimental Methods (탈착식 자전거 캐리어용 흡착 패드의 실험 및 전산적 방법을 활용한 구조해석)

  • Suh, Yeong Sung;Lim, Geun Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.622-628
    • /
    • 2016
  • As the suction pad-supporting bike carrier attached to a car may be subject to an excessive dynamic load due to random vibrations and centrifugal forces during driving, its structural safety is of great concern. To examine this, the finite-element method with a fluid-structure interaction should be used because the pressure on the pad bottom is changed in real time according to the fluctuations of the force or the moment applied on the pad. This method, however, has high computing costs in terms of modeling efforts and software expense. Moreover, the accuracy of computation is not easily guaranteed. Therefore, a new method combining the experiment and computation is proposed in this paper: the bottom pressure and contact area of the pad under varying loads was measured in real time and the acquired data are then used in the nonlinear elastic finite-element calculations. The computational and experimental results obtained with the product under development showed that the safety margin of the pad under the axial loading is relatively sufficient, whereas with an excessive rotational loading, the pad is vulnerable to separation or a local surface damage; hence, the safety margin may not be secured. The predicted contact behavior under the variation of the magnitude and type of the loading were in good agreement with the one from the experiment. The proposed analysis method in this study could be used in the design of similar vacuum pad systems.