DOI QR코드

DOI QR Code

A Bayesian GLM Model Based Regional Frequency Analysis Using Scaling Properties of Extreme Rainfalls

극치자료계열의 Scaling 특성과 Bayesian GLM Model을 이용한 지역빈도해석

  • 김진영 (전북대학교 토목공학과, 방재연구센터) ;
  • 권현한 (전북대학교 토목공학과, 방재연구센터) ;
  • 이병석 (전북대학교 토목공학과)
  • Received : 2016.04.21
  • Accepted : 2016.09.13
  • Published : 2017.02.01

Abstract

Design rainfalls are one of the most important hydrologic data for river management, hydraulic structure design and risk analysis. The design rainfalls are first estimated by a point frequency analysis and the IDF (intensity-duration-frequency) curve is then constructed by a nonlinear regression to either interpolate or extrapolate the design rainfalls for other durations which are not used in the frequency analysis. It has been widely recognised that the more reliable approaches are required to better account for uncertainties associated with the model parameters under circumstances where limited hydrologic data are available for the watershed of interest. For these reasons, this study developed a hierarchical Bayesian based GLM (generalized linear model) for a regional frequency analysis in conjunction with a scaling function of the parameters in probability distribution. The proposed model provided a reliable estimation of a set of parameters for each individual station, as well as offered a regional estimate of the parameters, which allow us to have a regional IDF curve. Overall, we expected the proposed model can be used for different aspects of water resources planning at various stages and in addition for the ungaged basin.

확률강수량 산정은 하천관리, 수공구조물 설계 및 위험도 분석에 있어 중요한 기초적인 자료 중 하나이다. 실무에서는 대표지속시간에 대해서 지점빈도해석을 통해 확률강수량을 추정하고 이를 지속시간에 대해서 회귀분석을 실시하여 IDF (intensity-duration-frequency) 곡선을 작성한다. 이들 IDF곡선을 활용하여 기타 지속시간에 대해서는 내삽 또는 외삽으로 보간 하여 확률강수량 추정이 이루어지고 있다. 우리나라의 경우 상대적으로 자료 연한이 짧은 점을 고려한다면, 보다 정확하고 신뢰성 있는 확률강수량 산정 기법의 필요성이 대두되고 있다. 이러한 이유로 본 연구에서는 Bayesian GLM 모형을 통하여 자료의 확률분포 매개변수의 Scaling 특성을 고려할 수 있는 지역빈도해석 모형을 개발하였다. 모형 적용결과 개별지점에서 효과적인 매개변수 추정뿐만 아니라, 유역전체의 특성을 대표하는 매개변수 추정이 가능하였다. 본 연구결과를 통해 도출된 IDF 곡선은 향후 다양한 수자원분야의 기초자료로 활용될 수 있을 것으로 기대되며, 미계측유역 또는 지속시간별 자료가 불충분한 지역에 대해서도 활용이 가능할 것으로 판단된다.

Keywords

Acknowledgement

Supported by : 국토교통부

References

  1. Ariff, N. M., Jemain, A. A., Ibrahim, K. and Wan Zin, W. Z. (2012). "IDF relationships using bivariate copula for storm events in Peninsular Malaysia." Journal of Hydrology, Vol. 470-471, pp. 158-171. https://doi.org/10.1016/j.jhydrol.2012.08.045
  2. Bernard, M. M. (1932). "Formulas for rainfall intensities of long durations." Trans. Am. Soc. Civ. Eng., Vol. 96, pp. 592-624.
  3. Bougadis, J. and Adamowsi, K. (2006). "Scaling model of a rainfall intensity-duration-frequency relationship." Hydrological Processes, Vol. 20, pp. 3747-3757. https://doi.org/10.1002/hyp.6386
  4. Daniel, C., Douglas, N. and Philippe, N. (2007). "Bayesian spatial modeling of extreme precipitation return levels." Journal of the American Statistical Association, Vol. 102, No. 479, pp. 824-840. https://doi.org/10.1198/016214506000000780
  5. Deidda, R. (2000). "Rainfall downscaling in a space-time multifractal framework." Water Resource Research, Vol. 36, pp. 1779-1794. https://doi.org/10.1029/2000WR900038
  6. Garcia-Marin, A. P., Ayuso-Munoz, J. L., Jimenez-Hornero, F. J. and Estevez, J. (2013). "Selecting the best IDF model by using the multifractal approach." Hydrological processes, Vol. 27, pp. 433-443. https://doi.org/10.1002/hyp.9272
  7. Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004). Bayesian Data Analysis. CHAPMAN&HALL/CRC.
  8. Gupta, V. K. and Waymire, E. C. (1993). "A statistical analysis of mesoscale rainfall as a random cascade." J. Appl. Meteoro., Vol. 32, pp. 251-267. https://doi.org/10.1175/1520-0450(1993)032<0251:ASAOMR>2.0.CO;2
  9. Harris, D. M., Menabde, A. S. and Austin, G. (1998). "Breakdown coefficients and scaling properties of rain fields." Nonlinear Processes in Geophysics, Vol. 5, pp. 93-104. https://doi.org/10.5194/npg-5-93-1998
  10. Heo, J. H., Kim, K. D. and Han, J. H. (1999). "Derication of rainfall intensity-duration-frequency equation based on the approproate probability distribution." Journal of Korea Water Resources Association, KWRA, Vol. 32, No. 3, pp. 247-254 (in Korean).
  11. Hosking, J. R. M., Wallis, J. R. and Wood, E. F. (1985). "An appraisal of the regional flood frequency procedure in the UK Flood Studier Report." Hydrological Sciences Journal, Vol. 30, No. 1, pp. 85-109. https://doi.org/10.1080/02626668509490973
  12. James, B. E. and Thomas, H. J. (2004). "A hierarchical bayesian approach to seasonal hurricane modeling." Journal of Climate, doi:http://dx.doi.org/10.1175/1520-0442(2004)017<2813:AHBATS> 2.0.CO;2.
  13. Jung, Y. H., Kim, S. Y., Kim, T. S. and Heo, J. H. (2008). "Rainfall quantile estimation using scaling property in Korea." Journal of Korea Water Resources Association, KWRA, Vol. 41, No. 9, pp. 873-884 (in Korean). https://doi.org/10.3741/JKWRA.2008.41.9.873
  14. Katz, R. W., Parlange, M. B. and Naveau, P. (2002). "Statistics of extremes in hydrology." Water Resources Research, Vol. 25, pp. 1287-1304. https://doi.org/10.1016/S0309-1708(02)00056-8
  15. Kim, J. Y., Kim, J. G., Lee, J. C. and Kwon, H. H. (2016). "A development of rating-curve usign Bayesian Multi-Segmented model." Journal of Korea Water Resources Association, KWRA, Vol. 49, No. 3, pp. 253-262 (in Korean). https://doi.org/10.3741/JKWRA.2016.49.3.253
  16. Kim, J. Y., Kwon, H. H. and Lim, J. Y. (2014). "Development of hierarchical bayesian spatial regional frequency analysis model considering geographical characteristics." Journal of Korea Water Resources Association, KWRA, Vol. 47, No. 5, pp. 469-482 (in Korean). https://doi.org/10.3741/JKWRA.2014.47.5.469
  17. Kim, K. T., Kim, T. S., Kim, S. Y. and Heo, J. H. (2008). "Application of intensity-duration-frequency curve to korea derived by cumulative distribution function." Journal of Korean Society of Civil Engineer, KSCE, Vol. 28, No. 4B, pp. 363-374.
  18. Kuo, C. C., Gan, T. Y. and Chan, S. (2013). "Regional intensityduration-frequency curves derived from ensemble empirical mode decomposition and scaling property." Journal of Hydrologic Engineering, Vol. 18, No. 1, pp. 66-74. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000612
  19. Kwon, H. H. and Myeong, S. J. (2011). "Development of a future disaster risk assessment model for climate change using bayesian GLM and statistical downscaling model." Korean Society of Hazard Mitigation, Vol. 11, No. 6, pp. 207-216 (in Korean).
  20. Kwon, H. H., Kim, J. G., Lee, J. S. and Na, B. K. (2012). "Uncertainty assessment of single event rainfall-runoff model using bayesian model." Journal of Korea Water Resources Association, KWRA, Vol. 45, No. 5, pp. 505-516 (in Korean). https://doi.org/10.3741/JKWRA.2012.45.5.505
  21. Kwon, H. H., Kim, J. Y., Kim, O. K. and Lee, J. J. (2013). "A development of regional frequency model based on hierarchical bayesian model." Journal of Korea Water Resources Association, KWRA, Vol. 46, No. 1, pp. 13-24 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.1.13
  22. Kwon, H. H., Upmanu, L. and Jayantha, O. (2009). "Simulation of daily rainfall scenarios with interannual and mutidecadal climate cycles for South Florida." Stochastic Environmental Research and Risk Assessment, Vol. 23, pp. 879-896. doi:10.1007/s00477-008-0270-2.
  23. Lee, J. J., Kwon, H. H. and Hwang, K. N. (2010). "Concept of seasonality analysis of hydrologic extreme variables and design rainfall estimation using nonstrationary frequency analysis." Journal of Korea Water Resources Association, KWRA, Vol. 43, No. 8, pp. 733-745 (in Korean). https://doi.org/10.3741/JKWRA.2010.43.8.733
  24. Menabde, M. and Sivapalan, M. (2000). "Modeling of rainfall time series and extremes using bounded random cascades and levy-stable distributions." Water Resources Research, Vol. 36, pp. 3293-3300. https://doi.org/10.1029/2000WR900197
  25. Menabde, M., Seed, A. and Pegram, G. (1999). "A simple scaling model for extreme rainfall." Water Resources Research, Vol. 35, No. 1, pp. 335-339. https://doi.org/10.1029/1998WR900012
  26. Sherman, C. W. (1931). "Frequency and intensity of excessive rainfall at Boston." Trans. Am. Soc. Civ. Eng., Vol. 95, pp. 951-960.
  27. Shin, J. Y., Kim, T. S., Kim, S. Y. and Heo, J. H. (2007). "Parameter estimation of intensity-duration-frequency formula using genetic algorithm (II): Separation of Short and Long Durations." Journal of Korea Water Resources Association, KWRA, Vol. 40, No. 10, pp. 823-832. https://doi.org/10.3741/JKWRA.2007.40.10.823
  28. Singh, V. P. and Zhang, L. (2007). "IDF curves using the frank archimedean copula." Journal of hydrologic engineering, Vol. 12, No. 6, pp. 651-662. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:6(651)
  29. Veneziano, D. and Langousis, A. (2005). "The areal reduction factor: A mutifractal analysis." Water Resource Research, Vol. 41, W07008, doi:10.1029/2004WR003765.
  30. Willems, P. (2000). "Compound intensity-duration-frequency relationships of extreme precipitation for two seasons and two storm types." Journal of Hydrology, Vol. 233, pp. 189-205. https://doi.org/10.1016/S0022-1694(00)00233-X
  31. Yoo, C. S., Kim, N. W. and Jung, K. S. (2001). "A point rainfall model and rainfall intensity-duration-frequency analysis." Journal of Korea Water Resources Association, KWRA, Vol. 34, No. 6, pp. 577-586 (in Korean).
  32. Yu, P. S., Yang, T. C. and Lin, C. S. (2004). "Regional rainfall intensity formulas based on scaling property of rainfall." Journal of Hydrology, Vol. 295, pp. 108-123. https://doi.org/10.1016/j.jhydrol.2004.03.003

Cited by

  1. The Spatial and Temporal Structure of Extreme Rainfall Trends in South Korea vol.9, pp.10, 2017, https://doi.org/10.3390/w9100809