• 제목/요약/키워드: Nonlinear Contact Problem

검색결과 48건 처리시간 0.024초

Response of a completely free beam on a tensionless Pasternak foundation subjected to dynamic load

  • Celep, Z.;Guler, K.;Demir, F.
    • Structural Engineering and Mechanics
    • /
    • 제37권1호
    • /
    • pp.61-77
    • /
    • 2011
  • Static and dynamic responses of a completely free elastic beam resting on a two-parameter tensionless Pasternak foundation are investigated by assuming that the beam is symmetrically subjected to a uniformly distributed load and concentrated load at its middle. Governing equations of the problem are obtained and solved by paying attention on the boundary conditions of the problem including the concentrated edge foundation reaction in the case of complete contact and lift-off condition of the beam ina two-parameter foundation. The nonlinear governing equation of the problem is evaluated numerically by adopting an iterative procedure. Numerical results are presented in figures to demonstrate the non-linear behavior of the beam-foundation system for various values of the parameters of the problem comparatively by considering the static and dynamic loading cases.

휠-다리 로봇의 장애물극복 모션 계획 및 제어 방법 (Motion Planning and Control of Wheel-legged Robot for Obstacle Crossing)

  • 정순규;원문철
    • 로봇학회논문지
    • /
    • 제17권4호
    • /
    • pp.500-507
    • /
    • 2022
  • In this study, a motion planning method based on the integer representation of contact status between wheels and the ground is proposed for planning swing motion of a 6×6 wheel-legged robot to cross large obstacles and gaps. Wheel-legged robots can drive on a flat road by wheels and overcome large obstacles by legs. Autonomously crossing large obstacles requires the robot to perform complex motion planning of multi-contacts and wheel-rolling at the same time. The lift-off and touch-down status of wheels and the trajectories of legs should be carefully planned to avoid collision between the robot body and the obstacle. To address this issue, we propose a planning method for swing motion of robot legs. It combines an integer representation of discrete contact status and a trajectory optimization based on the direct collocation method, which results in a mixed-integer nonlinear programming (MINLP) problem. The planned motion is used to control the joint angles of the articulated legs. The proposed method is verified by the MuJoCo simulation and shows that over 95% and 83% success rate when the height of vertical obstacles and the length of gaps are equal to or less than 1.68 times of the wheel radius and 1.44 times of the wheel diameter, respectively.

접촉을 갖는 날개-동체 조인트의 비선형 해석을 통한 설계 개선 (Wing-Fuselage Joint Design Improvement Using Nonlinear Analysis Considering Contact)

  • 김광수;윤세현;심재열;이영무
    • 한국항공우주학회지
    • /
    • 제30권2호
    • /
    • pp.108-114
    • /
    • 2002
  • 본 연구에서는 KSR-Ⅲ 로켓의 날개-동체 조인트에 대한 비선형 유한요소해석을 수행하므로 적절한 설계 개선을 제시하였으며, 최종 설계의 검증을 위해 수행된 구조 시험 결과와 비교하여 해석의 타당성을 평가하였다. 날개-동체 조인트는 동체 프레임 상에 존재하는 체결 홈에 날개의 체결부가 끼워짐으로 연결되는 방식으로 설계되었다. 이 방식은 연결 구조물간의 하중 전달을 주로 구조물간의 접촉면을 통해 이루어지게 하며, 체결 볼트를 통해서는 구조물을 고정하되 전달 하중은 최소화하기 위한 것이다. 조인트 구조의 정확한 해석을 위해 연결 구조물간의 접촉 및 체결 볼트를 통한 하중 전달을 묘사할 수 있는 세심한 구조 모델링을 적용하였다. 해석 결과에 의해 제시된 설계 개선은 구조시험을 통해 안전성이 검증되었으며, 해석 및 시험 결과가 잘 일치하였다.

A Study on Implementation of Stable Interaction Control System

  • Yongteak Lim;Kim, Seungwoo
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.608-611
    • /
    • 2000
  • We introduce Adaptive Fuzzy Impedance Controller for position and force control when robot contact with environment. Because Robot and environment was always effected by nonlinear conditions, it need to deal with parameter’s uncertainty. For solving this problem, it induced Fuzzy System in Impedance Control so fuzzy system is impedance’s stiffness gain. We apply adaptive fuzzy impedance controller in One-Link Robot System, it shows the good performance on desired position control and force control about contacting with arbitrarily environment.

  • PDF

광탄성기법을 이용한 터빈로터 퍼-트리부의 응력해석 (Stress Analysis of Fir-Tree Root in Turbine Rotor Using Photoelastic Technique)

  • 신광복;경우민;홍창선
    • 대한기계학회논문집A
    • /
    • 제20권6호
    • /
    • pp.1784-1797
    • /
    • 1996
  • The disk/blade assembly of a turbine engine is made in the shape of a dovetail type or a fir-tree type. Since disk fillet regions or contact surfaces undergo high stress comcentration, fatigue cracks frequentrly occur in the disk/blade assembly. Therefore, it is necessary to analyze the stress distributions in the fir-tree type disk/balde assembly and predict the region of fatigue failure. The stress distributions of the disk/blade assembly were investigated by using the photoelastic method and the finite element method. Two dimensional photoelastic techniques were used to investigate the stress distributions of contact surfaces and fillet regions. TH stress distributions were obtained by the shear-difference method and were compared to the finite element results. It was found that maximum tensile stresses were higher in the fillet region thatn in the contact surfaces of the fir-tree models. The finite element results showed good agreement with the experimental results.

외연적 탄소성 유한요소해석에서의 민감도 해석과 준정적 변형에의 응용 (Sensitivity Analysis of the Explicit Elasto-plastic Finite Element Method and Application to the Quasi-static Deformation)

  • 김세호;허훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.402-407
    • /
    • 2001
  • Sensitivity analysis scheme is developed in the elasto-plastic finite element method with explicit time integration using direct differentiation method. The direct differentiation is concerned with the time integration, constitutive relation, shell element with reduced integration and the contact scheme. Sensitivity analysis results are mainly examined with the highly nonlinear and quasi-static problem with the complicated contact condition. The result shows stable sensitivity especially in the sheet metal forming analysis.

  • PDF

회전 핀의 종동 하중에 따른 박판 스프링의 대변형에 대한 연구 (A Study on the Large Deflection of Flat Spring Subjected to Follower Load by a Rotating Pin)

  • 정일섭
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1352-1358
    • /
    • 2004
  • The mechanical spring is one of widely used machine elements. Among various kinds, flat-type spring loaded by a rotating pin was studied. A flat spring was simplified to a cantilever beam, and numerical analysis was attempted. Since the loading pin rotates about a separate axis from the fixed spring or vice versa, the location, direction, and magnitude of the contact force including normal contact and friction loads vary accordingly. Meanwhile, the spring is deformed substantially as the relative motion progresses. Therefore, this problem needs to be formulated taking the follower loading characteristics and geometrical non-linearity into account. Derived nonlinear differential equation was solved to yield the spring deflection, contact force and the torque to rotate the pin, and the result was compared with a finite element solution. Also, the influences of principal design parameters were studied. The proposed methodology is expected to be useful for the design of pin-loaded flat spring and the prevention of mechanical failures in the form of yielding or fatigue failure of spring or severe wear of the components.

강체인 구와 DLC 코팅면 사이의 압입 및 미끄럼 접촉해석: 지지층 두께의 영향 (Indentation and Sliding Contact Analysis between a Rigid Ball and DLC-Coated Steel Surface: Influence of Supporting Layer Thickness)

  • 이준혁;박태조
    • Tribology and Lubricants
    • /
    • 제30권4호
    • /
    • pp.199-204
    • /
    • 2014
  • Various heat-treated and surface coating methods are used to mitigate abrasion in sliding machine parts. The most cost effective of these methods involves hard coatings such as diamond-like carbon (DLC). DLC has various advantages, including a high level of hardness, low coefficient of friction, and low wear rate. In practice, a supporting layer is generally inserted between the DLC layer and the steel substrate to improve the load carrying capacity. In this study, an indentation and sliding contact problem involving a small, hard, spherical particle and a DLC-coated steel surface is modeled and analyzed using a nonlinear finite element code, MARC, to investigate the influence of the supporting layer thickness on the coating characteristics and the related coating failure mechanisms. The results show that the amount of plastic deformation and the maximum principal stress decrease with an increase in the supporting layer thickness. However, the probability of the high tensile stress within the coating layer causing a crack is greatly increased. Therefore, in the case of DLC coating with a supporting layer, fatigue wear can be another important cause of coating layer failure, together with the generally well-known abrasive wear.

크롬 도금한 유압 실린더 로드와 시일 사이의 미끄럼접촉 해석 (Sliding Contact Analysis between Chromium Plated Hydraulic Cylinder Rod and Seals)

  • 박태조;김민규
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권1호
    • /
    • pp.10-15
    • /
    • 2018
  • The hydraulic cylinder seals are used not only to protect leakage of the working fluids but also to prevent incoming of foreign particles into the system. Chromium plating is generally applied to improve corrosion and wear resistance. It has been noticed that sealing surface damage occurs due to the hard foreign/wear particles contained in the hydraulic oil. In this study, a three-bodied sliding contact problem related with a PTFE seal, a spherical particle and chrome-plated steel substrate is modeled to investigate the relations to wear mechanism. Using the nonlinear finite element software, MARC/MENTAT, the deformed shapes, the von Mises and first principal stress distributions with plating thickness were compared. The sealing surface was mainly abraded by hard particles embedded in the seal. The plastic deformation of the steel substrate decreased with thicker plating. Hence it could be more effective to coat the sealing surface of a hydraulic cylinder with a hard material such as TiN, TiC and DLC.

항공기 재료 성형시의 손상진전에 관한 연구 (A Study on the Damage Propagation of an Aircraft Material During Forming)

  • 김위대;김진희;김승조
    • 소성∙가공
    • /
    • 제4권2호
    • /
    • pp.131-140
    • /
    • 1995
  • In this paper damage propagation of a material during forming is investigated with the concept of continuum damage mechanics. An isotropic damage model based on the theory of materials of type N is adopted to describe the damage process of a ductile material with large elasto-viscoplastic deformation. The stiffness degradation of the loaded material is chosen as a damage measure. The highly nonlinear equilibrium equations are reduced to the incremental weak form and approximated by the total Lagrangian finite element method. To simulate contact condition, extended interior penalty method with modified coulomb friction law is adopted. The displacement control method along with the modified Riks' continuation technique is used to solve the incremental iterative equations. As numerical examples, upsetting problem and backward extrusion problem are simulated and the results of damage propagation and $J_2$ stress contours with and without friction are presented.

  • PDF