• 제목/요약/키워드: Nonlinear Compensation

검색결과 465건 처리시간 0.034초

A Learning Controller for Gate Control of Biped Walking Robot using Fourier Series Approximation

  • Lim, Dong-cheol;Kuc, Tae-yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.85.4-85
    • /
    • 2001
  • A learning controller is presented for repetitive walking motion of biped robot. The learning control scheme learns the approximate inverse dynamics input of biped walking robot and uses the learned input pattern to generate an input profile of different walking motion from that learnt. In the learning controller, the PID feedback controller takes part in stabilizing the transient response of robot dynamics while the feedforward learning controller plays a role in computing the desired actuator torques for feedforward nonlinear dynamics compensation in steady state. It is shown that all the error signals in the learning control system are bounded and the robot motion trajectory converges to the desired one asymptotically. The proposed learning control scheme is ...

  • PDF

Design of In-Motion Alignment System of SDINS using Robust EKF

  • Hong, Hyun-Su;Lee, Jang-Gyu;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.177.3-177
    • /
    • 2001
  • In this paper, the design of the in-motion alignment system of Strapdown Inertial Navigation System(SDINS) using Robust Extended Kalman Filter(REKF) is presented. The compensation of errors in the aided navigation system is accomplished by the indirect feedback filtering. The performance of the aided navigation algorithm is very sensitive to the accuracy of the initial estimate, which is the characteristic of the EKF. Unfortunately, the initial attitude error can be very large during the in-motion alignment. To overcome the in-motion alignment under large initial attitude error problem, the REKF using linear robust filtering technique is proposed. The linear robust H$_2$ filter can be adopted for nonlinear ...

  • PDF

전자파 비흡수율(SAR) 측정용 전기장 프로브의 검파 전압 특성 (Characteristics of the Detection Voltages of an E-field Sensing Probe in SAR Measurement System)

  • 김윤명;이승배;김기회
    • 한국전자파학회논문지
    • /
    • 제16권2호
    • /
    • pp.217-221
    • /
    • 2005
  • 이동통신 기기로부터 복사되는 전자파가 인체에 흡수되는 에너지의 양은 모의 인체 내에서 전자파 비흡수율 [SAR(Specific Absorption Rate)]로 평가된다. RF 센싱 프로브의 Schottky 다이오드에 검출된 DC 전압은 높은 레벨에서 자승법칙(Square Law) 영역을 벗어나 선형성을 나타낸다. Square Law Region을 벗어난 직선 영역의 검파는 적절한 DCP(Diode Compression Point) 값으로 검 파된 전압을 보상하여야 한다. 적절한 보상에 의한 한 점에서의 SAR 값은 200 W/kg까지 측정할 수 있다.

추정된 쿨롱 마찰을 보상한 볼-스크류 시스템의 위치제어 (Position Control of Ball-Screw Systems with Compensation of Estimated Coulomb Friction)

  • 김한메;최정주;이영진;김종식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.893-898
    • /
    • 2003
  • Coulomb friction is an important factor for precise position tracking control systems. The control systems with friction causes the steady state error because of being sensitive to the change of system condition and highly nonlinear characteristics. To overcome these problems, we use an estimation scheme of Coulomb friction to experiment for it's compensating. The estimated factor for Coulomb friction is used as a feed-forward compensator to improve the tracking performance of ball-screw systems. The tracking performance was improved by compensating the estimated friction torque in the feed-forward term. And, the sliding mode control which is derived from the Lyapunov stability theorem is applied for robust stability and reducing chattering. The experimental results show that the sliding mode controller with adaptive friction compensator has a good tracking performance compared with the friction uncompensated controller.

  • PDF

리니어 모터의 위치 정밀도 향상에 관한 연구 (A Study on Enhancement of the Position Accuracy of a Linear Motor)

  • 민경석;오준모;최우천
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1828-1831
    • /
    • 2003
  • There are various sources causing a position error in a linear motor. This paper focuses on error sources from rotational motions of a table and friction. Rotational errors occur due to imperfections during manufacturing and/or assembly of guide ways, and cause a position error at locations of interest. Friction is another factor deteriorating the position error due to its highly nonlinear behavior. The position error of the linear motor was about 20∼30$\mu\textrm{m}$. After compensating the position errors due to rotational error motions and friction. the remaining errors become about 6~8$\mu\textrm{m}$ and 2~3$\mu\textrm{m}$, respectively. It is shown that the positional accuracy of a linear can be greatly improved by compensating the two error sources.

  • PDF

Advanced controller design for AUV based on adaptive dynamic programming

  • Chen, Tim;Khurram, Safiullahand;Zoungrana, Joelli;Pandey, Lallit;Chen, J.C.Y.
    • Advances in Computational Design
    • /
    • 제5권3호
    • /
    • pp.233-260
    • /
    • 2020
  • The main purpose to introduce model based controller in proposed control technique is to provide better and fast learning of the floating dynamics by means of fuzzy logic controller and also cancelling effect of nonlinear terms of the system. An iterative adaptive dynamic programming algorithm is proposed to deal with the optimal trajectory-tracking control problems for autonomous underwater vehicle (AUV). The optimal tracking control problem is converted into an optimal regulation problem by system transformation. Then the optimal regulation problem is solved by the policy iteration adaptive dynamic programming algorithm. Finally, simulation example is given to show the performance of the iterative adaptive dynamic programming algorithm.

Robot manipulator's contact tasks on uncertain flexible objects

  • Wu, Jianqing;Luo, Zhiwei;Yamakita Masaki;Ito, Koji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.460-463
    • /
    • 1995
  • The present paper studies a robot manipulator's contact tasks on the uncertain flexible objects. The flexible object's distributed parameter model is approximated into a lumped "position state-varying" model. By using the well-known nonlinear feedback compensation, the robot's control space is decomposed into the position control subspace and the object's torque control subspace. The optimal state feedback is designed for the position loop, and the robot's contact force is controlled through controlling the resultant torque on the object using model-reference simple adaptive control. Experiments of a PUMA robot interacting with an aluminum plate show the effectiveness of this control approach. approach.

  • PDF

AN EFFICIENT SENEOR ARRAY FOR A LATFE-GAP MAGNETIC LEVITATION SYSTEM

  • Na, Seung-You;Shin, Dae-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.154-157
    • /
    • 1995
  • A magnetic levitation control system is nonlinear and very unstable. Thus there should be a stabilizing compensation network and a feedback path. Due to the levitation control a noncontact photoresistor sensor is generally used. One photocell provides a certain amount of variation in length by the ball shadow casted on the cell surface. Furthermore at the boundary of the cell, the linearity of sensitivity deteriorates severely. To overcome the constraints of the length and linearity, an efficient sensor array is deviced and applied in the feedback path of a large-gap magnetic levitation control system. A number of CdS photocells and a summing circuit of the sensor output signals are used for a sensor array. The levitation length of a ball and the transient performances are main objectives of the large-gap suspension system using the sensor array.

  • PDF

학습제어기법을 이용한 X-Y Table의 마찰보상 (Friction Compensation of X-Y robot Using a Learning Control Technique)

  • 손경오;국태용
    • 제어로봇시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.248-255
    • /
    • 2000
  • Whereas the linear PID controller is widely used for control of industrial servo systems a high precision positioning system is not easy to control only with the PID controller due to uncertain nonlinear dynamics such as friction backlash etc. As a viable means to overcome the difficulty a learning control scheme is proposed in this paper that is simple and straightforward to implement. The proposed learning controller takes full advantage of current feedback capability of the inner-loop of the control system in that electrical motor dynamics as the well as mechanical part of X-Y positioning system is included in the learning control scheme, The experimental results are given to demonstrate its feasibility and effectiveness in terms of convergence precision of tracking and robustness in comparison with the conventional control method.

  • PDF

CdS센서의 보상에 의한 자기부상 시스템의 성능 개선 (Performance Improvement of Magnetic Levitation System by CdS Sensor Compensation)

  • 나승유;최윤영;박민상;윤두현;정병두
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.1133-1136
    • /
    • 1999
  • A magnetic levitation control system is inherently nonlinear and very unstable. Thus there should be a stabilizing compensator network and a negative feedback path using noncontact photoresistor or ultrasonic sensors for the levitation operation. Since the photo sensor plays a key role in the system, the steady-state error and transient performance of the overall system depend on the characteristics of the sensors. But the sensor itself also suffers from nonlinearity, and the magnitude of sensor input heavily depends on environmental conditions. To improve the output performance, we added a linearizing circuit for the sensor characteristics and a disturbance cancelation circuit to avoid sensitive output due to extraneous interfering light.

  • PDF