• Title/Summary/Keyword: Nonlinear Analysis

Search Result 7,674, Processing Time 0.037 seconds

Analysis of 3D Accuracy According to Determination of Calibration Initial Value in Close-Range Digital Photogrammetry Using VLBI Antenna and Mobile Phone Camera (VLBI 안테나와 모바일폰 카메라를 활용한 근접수치사진측량의 캘리브레이션 초기값 결정에 따른 3차원 정확도 분석)

  • Kim, Hyuk Gi;Yun, Hong Sik;Cho, Jae Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.31-43
    • /
    • 2015
  • This study had been aimed to conduct the camera calibration on VLBI antenna in the Space Geodetic Observation Center of Sejong City with a low-cost digital camera, which embedded in a mobile phone to determine the three-dimension position coordinates of the VLBI antenna, based on stereo images. The initial values for the camera calibration have been obtained by utilizing the Direct Linear Transformation algorithm and the commercial digital photogrammetry system, PhotoModeler $Scanner^{(R)}$ ver. 6.0, respectively. The accuracy of camera calibration results was compared with that the camera calibration results, acquired by a bundle adjustment with nonlinear collinearity condition equation. Although two methods showed significant differences in the initial value, the final calibration demonstrated the consistent results whichever methods had been performed for obtaining the initial value. Furthermore, those three-dimensional coordinates of feature points of the VLBI antenna were respectively calculated using the camera calibration by the two methods to be compared with the reference coordinates obtained from a total station. In fact, both methods have resulted out a same standard deviation of $X=0.004{\pm}0.010m$, $Y=0.001{\pm}0.015m$, $Z=0.009{\pm}0.017m$, that of showing a high degree of accuracy in centimeters. From the result, we can conclude that a mobile phone camera opens up the way for a variety of image processing studies, such as 3D reconstruction from images captured.

Strength and Lateral Torsional Behavior of Horizontally Curved Steel I-Girders Subjected to Equal End Moments (양단 균일 모멘트를 받는 수평곡선 I형 강재 거더의 횡-비틀림 거동 및 강도 산정 방안)

  • Lee, Keesei;Lee, Manseop;Choi, Junho;Kang, Youngjong
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • A curved member should resist bending and torsional moments simultaneously even though the primary load is usually supposed to be gravitational load. The torsional moment causes complicate stress state and also can result in early yielding of material to reduce member strength. According to analysis results, the strength of a curved member that has 45 degrees of subtended angle could decrease more than 50% compare to straight girder. Nevertheless, there have been very few of researches related with ultimate strength of curved girders. In this study, various kinds of stiffness about bending, pure torsion and warping were considered with a number of models in order to verify the main factor that affects ultimate behavior of curved girder. Lateral and rotational displacement of curved member were introduced as lateral-torsional-vertical behavior and bending-torsional moment interaction curve was derived. Finally, a strength equation for ultimate moment of horizontally curved steel I-girders subjected to equal end moments based on the interaction curves. The equation could take account of the effect of curvature, unbraced length and sectional properties.

A Numerical Study for Calculation of Overall Heat Transfer Coefficient of Double Layers Covering and Insulation Material for Greenhouse (온실용 이중피복 및 보온재의 관류열전달계수 산정을 위한 수치적 연구)

  • Lee, Jong-Won;Kim, Dong-Keon;Lee, Hyun-Woo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.33 no.2
    • /
    • pp.41-47
    • /
    • 2015
  • This study calculated the overall heat transfer coefficient (U-value) of greenhouse covering materials with thermal screens using a simulation model and then estimated the validity of the calculated results by comparison with measured values. The U-value decreased gradually as the thickness of the air space between the double glazing increased, and then remained essentially constant at thicknesses exceeding 25 mm. The U-value also increased with the difference in temperature between the inside and outside of the hot box. The vigorous convective heat transfer between two plastic films caused unsteady heat flow and then created a nonlinear temperature distribution in the air space. The distance did not affect the U-value at distances of 50~200 mm between the plastic covering and thermal curtain. The numerical calculation results, with and without sky radiation, were in accord with the experimental results for a $30^{\circ}C$ temperature difference between the inside and outside of the hot box. In conclusion, a reliable U-value can be calculated for a temperature difference of $30^{\circ}C$ or more between the inside and outside of the hot box.

Development of a Model for Calculating Road Congestion Toll with Sensitivity Analysis (민감도 분석을 이용한 도로 혼잡통행료 산정 모형 개발)

  • Kim, Byung-Kwan;Lim, Yong-Taek;Lim, Kang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.5
    • /
    • pp.139-149
    • /
    • 2004
  • As the expansion of road capacity has become impractical in many urban areas, congestion pricing has been widely considered as an effective method to reduce urban traffic congestion in recent years. The principal reason is that the congestion pricing may lead the user equilibrium (UE) flow pattern to system optimum (SO) pattern in road network. In the context of network equilibrium, the link tolls according to the marginal cost pricing principle can user an UE flow to a SO pattern. Thus, the pricing method offers an efficient tool for moving toward system optimal traffic conditions on the network. This paper proposes a continuous network design program (CNDP) in network equilibrium condition, in order to find optimal congestion toll for maximizing net economic benefit (NEB). The model could be formulated as a bi-level program with continuous variable(congestion toll) such that the upper level problem is for maximizing the NEB in elastic demand, while the lower level is for describing route choice of road users. The bi-level CNDP is intrinsically nonlinear, non-convex, and hence it might be difficult to solve. So, we suggest a heuristic solution algorithm, which adopt derivative information of link flow with respect to design parameter, or congestion toll. Two example networks are used for test of the model proposed in the paper.

Assessment of p-y Behaviors of a Cyclic Laterally Loaded Pile in Saturated Dense Silty Sand (조밀한 포화 실트질 모래지반에서 횡방향 반복하중을 받는 말뚝의 p-y 거동 평가)

  • Baek, Sung-Ha;Choi, Changho;Cho, Jinwoo;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.97-110
    • /
    • 2019
  • Piles that support offshore wind turbine structures are dominantly subjected to cyclic lateral loads of wind, waves, and tidal forces. For a successful design, it is imperative to investigate the behavior of the cyclic laterally loaded piles; the p-y curve method, in which the pile and soil are characterized as an elastic beam and nonlinear springs, respectively, has been typically utilized. In this study, model pile tests were performed in a 1 g gravitational field so as to investigate the p-y behaviors of cyclic laterally loaded piles installed in saturated dense silty sand. Test results showed that cyclic lateral loads gradually reduced the overall stiffness of the p-y curves (initial stiffness and ultimate soil reaction). This is because the cyclic lateral loads disturbed the surrounding soil, which led to the decrement of the soil resistance. The decrement effects of the overall stiffness of the p-y curves became more apparent as the magnitude of cyclic lateral load increased and approached the soil surface. From the test results, the cyclic p-y curve was developed using a p-y backbone curve method. Pseudo-static analysis was also performed with the developed cyclic p-y curve, confirming that it was able to properly predict the behaviors of cyclic laterally loaded pile installed in saturated dense silty sand.

Development of Sag and Tension Sensitivity Estimation Method for Configuration Control under PPWS Erection in a Suspension Bridge (현수교 PPWS 가설중 형상관리를 위한 PPWS 새그 및 장력민감도 산정법 개발)

  • Jeong, Woon;Seo, Ju Won;Lee, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.255-266
    • /
    • 2012
  • Main cable of a suspension bridge is the important member which shows the overall structure integrity at bridge completion. Configuration of main cable is a free hanging state at cable erection completion and is different from that at bridge completion supporting the dead loads such as hanger, girder, and so on. Accordingly, the configuration control under cable erection is considerably significant because the configuration at cable erection completion has direct influence on that at bridge completion. That is performed by sag adjustments at center, side span and tension adjustments at anchor span. The former needs the sag sensitivity which represents the control quantity of strand length corresponding to that of sag. The latter requires the tension sensitivity which shows the change of strand tension according to that of strand temperature. In this study, the fundamental equations of cable were derived with the assumption of either catenary or parabola shape, the differential-related equations using chain rule on horizontal tension were drawn from those and finally the estimation methods of the sag / tension sensitivity were proposed from both those. The nonlinear numerical analysis flow charts of sag sensitivity based on the catenary equations were proposed and the sag sensitivities grounded on the differential-related equations were compared with the results using them for various parameters of sag change. Also, considering the combinations of sag change parameters, the calculation method of the final variation for the cable sag was suggested. For the real suspension bridge under construction with PPWS method, the sag/tension sensitivity were estimated considering the construction conditions like the change of PPWS length, PPWS temperature, bridge span, etc.. We hope that this study will be a systematic guideline for the configuration control under main cable erection and improved highly by field verification in the real bridge site.

Wave Forces Acting on Large Vertical Circular Cylinder and Consequent Wave Transformations by Full-Nonlinear Analysis Method after Wave Breaking (강비선형해석법에 의한 대형연직원주구조물에 작용하는 쇄파후의 파력 및 파랑변형)

  • Lee, Kwang-Ho;Shin, Dong-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.401-412
    • /
    • 2008
  • Simulations of three-dimensional numerical wave tank are performed to investigate wave force acting on a large cylindrical structure and consequent wave deformation, which are induced by bore after breaking waves. The numerical model is based on the three-dimensional Navier-Stokes equations with a finite-difference method combined with a volume of fluid(VOF) method, which is capable of tracking the complex free surface, including wave breaking. In order to promote wave breaking of the incident wave, the approach slope was built seaward of the structure with a constant slope and a large cylindrical structure was installed on a flat bed. The incident waves were broken on the approach slope or flat bed by its wave height. In the present study, all waves acting on the large cylindrical structure were limited to breaking bore after wave breaking. The effects of the position of the structure and the incident wave height on the wave force and wave transformations were mainly investigated with the concern of wave breaking. Further, the relations between the variation of wave energy by wave propagation after wave breaking and wave force acting on the structure were discussed to give the understanding of the full-linear wave-structure interactions in three-dimensional wave fields.

Prediction and analysis of acute fish toxicity of pesticides to the rainbow trout using 2D-QSAR (2D-QSAR방법을 이용한 농약류의 무지개 송어 급성 어독성 분석 및 예측)

  • Song, In-Sik;Cha, Ji-Young;Lee, Sung-Kwang
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.544-555
    • /
    • 2011
  • The acute toxicity in the rainbow trout (Oncorhynchus mykiss) was analyzed and predicted using quantitative structure-activity relationships (QSAR). The aquatic toxicity, 96h $LC_{50}$ (median lethal concentration) of 275 organic pesticides, was obtained from EU-funded project DEMETRA. Prediction models were derived from 558 2D molecular descriptors, calculated in PreADMET. The linear (multiple linear regression) and nonlinear (support vector machine and artificial neural network) learning methods were optimized by taking into account the statistical parameters between the experimental and predicted p$LC_{50}$. After preprocessing, population based forward selection were used to select the best subsets of descriptors in the learning methods including 5-fold cross-validation procedure. The support vector machine model was used as the best model ($R^2_{CV}$=0.677, RMSECV=0.887, MSECV=0.674) and also correctly classified 87% for the training set according to EU regulation criteria. The MLR model could describe the structural characteristics of toxic chemicals and interaction with lipid membrane of fish. All the developed models were validated by 5 fold cross-validation and Y-scrambling test.

Nonlinear Analysis of a Forced Beam with Internal Resonances (내부공진을 가진 보의 비선형 강제진동해석)

  • 이원경;소강영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.147-152
    • /
    • 1991
  • 양단이 고정된 보가 변형할 때에는 중간 평면의 신장을 수반하게 된다. 운동 의 진폭이 증가함에 따라 이 신장이 보의 동적 응답에 미치는 영향은 심각 하게 된다. 이러한 현상은 응력과 변형도와의 관계가 선형적이라 하더라도 변형도와 변위와의 관계식은 비선형이 되며 결국은 보의 비선형 운동방정식 을 낳게된다. 보는 연속계이긴하지만 근사를 위하여 다자유도계로 간주할 수 있다. 비선형 다자유도계에 있어서는 선형화된 계의 고유진동수끼리 적절한 관계를 가질 때 내부공진이 발생할 수 있다. 양단이 고정된 곧은 보의 비선 형 동적응답이 그동안 많이 연구되어 오고 있으며, 집중질량을 가지고 직각 으로 굽은 보의 해석을 위하여 내부공진을 고려한 해석적 혹은 실험적 연구 가 이루어져 왔다. 그중에서도 Nayfeh등은 조화가진 하의 핀과 꺾쇠로 고정 된(hinged-clamped) 보의 정상상태응답을 해석하기 위해 두 모우드 사이의 내부공진을 고려하였다. 이 연구에서는 세 모우드 사이의 내부공진을 고려하 여 강제진행 중인 보의 비선형 해석을 다루고자 한다. 이 문제에 관심을 갖 게 된 동기는 "연속계의 비선형 해석에서 더 많은 모우드를 포함시키면 어 떤 결과를 낳게 될 것인가\ulcorner"라는 질문에서 생겨난 것이다. 갤러킨 법을 이용 하여 비선형 편미분 방정식과 경계 조건으로 표현되는 이 문제를 연립 비선 형 상미분 방정식으로 변환한다. 다중시간법(the method of multiple scales) 을 이용하여 이 상미분 방정식을 정상상태에서의 세 모우드의 진폭과 위상 에 대한 연립비선형 대수방정식으로 변환한다. 이 대수방정식을 수치적으로 풀어서 정상상태 응답을 구하고 Nayfeh등의 결과와 비교한다. 결과와 비교한다. studies, the origin of ${\alpha}$$_1$peak was attributed to the detrapping process form trap with 2.88[eV] deep of injected space charge from the chathode in the crystaline regions. The origin of ${\alpha}$$_2$ peak was regarded as the detrapping process of ions trapped with 0.9[eV] deep originated from impurity-ion remained in the specimen during production process of the material, in the crystalline regions. The origin of ${\beta}$ peak was concluded to be due to the depolarization process of "C=0"dipole with the activation energy of 0.75[eV] in the amorphous regions. The origin of ${\gamma}$ peak was responsible to the process combined with the depolarization of "CH$_3$", chain segment, with the activation energy of carriers from the shallow trap with 0.4[eV], in he amorp

  • PDF

A Study on Buckling Characteristics of 2-way Grid Single-Layer Domes Considering Rigidity-Effect of Roofing Covering Materials (지붕마감재 강성효과를 고려한 2방향 그리드 단층돔의 좌굴특성에 관한 연구)

  • Park, Sang-Hoon;Suk, Chang-Mok;Jung, Hwan-Mok;Kwon, Young-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.1 s.3
    • /
    • pp.85-92
    • /
    • 2002
  • Two way grid single-layer domes are of great advantage in fabrication and construction because of the simple fact that they have only four members at each junction. But, from a point of view of mechanics, the rectangular latticed pattern gives rise to a nonuniform rigidity-distribution in the circumferential direction. If the equivalent rigidity is considered in the axial direction of members, the in-plane equivalent shearing rigidity depends only on the in-plane bending rigidity of members and its value is very small in comparison to that of the in-plane equivalent stretching rigidity. It has a tendency to decrease buckling -strength of dome considerably by external force. But it is possible to increase buckling strength by the use of roofing covering materials connected to framework. In a case like this, shearing rigidity of roofing material increases buckling strength of the overall structure and can be designed economically from the viewpoint of practice. Therefore, the purpose of this paper, in Lamella dome and rectangular latticed dome that are a set of 2-way grid dome, is to clarify the effects of roofing covering materials for increasing of buckling strength of overall dome. Analysis method is based on FEM dealing with the geometrically nonlinear deflection problems. The conclusion were given as follows: 1. In case of Lamella domes which have nearly equal rigidity in the direction of circumference, the rigidity of roofing covering materials does not have a great influence on buckling-strength, but in rectangular latticed domes that has a clear periodicity of rigidity, the value of its buckling strength has a tendency to increase considerably with increasing rigidity of roofing covering materials 2. In case of rectangular latticed domes, as rise-span-ratio increases, models which is subjected to pressure -type-uniform loading than vertical-type-uniform loading are higher in the aspects of the increasing rate of buckling- strength according to the rate of shear reinforcement rigidity, but in case of Lamella dome, the condition of loading and rise-span-ratio do not have a great influence on the increasing rate of buckling strength according to the rate of shear reinforcement rigidity.

  • PDF