• Title/Summary/Keyword: Noninvasive Method

Search Result 274, Processing Time 0.021 seconds

Estimation of compensatory hypertrophy in lower urinary system using void force measurement (배뇨력 측정을 통한 하부요로계의 보상성기능항진 평가)

  • Jeong, Do-Un;Jeon, Gye-Rok
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.449-456
    • /
    • 2006
  • The purpose of urodynamic investigation is to obtain the information on the function of the urinary system. The aim of this study is to acquire the useful information of lower urinary tract symptom (LUTS) diagnosis through void force signal as noninvasive method. The system which could evaluate the function of compensatory hypertrophy with noninvasive and comfortable method was implemented to measure uroflow and void force during urination. The implemented system composes of the sensor parts, signal conditioning parts and PC monitoring program. For the evaluation of the implemented system, the simulation of control part of the system was performed and the model system for the lower urinary system was designed. The superiority of a measuring characteristic of the implemented system was verified using the model system. From the evaluation of the model system, we have found out that the void force was dependent on the occlusion degree and compensatory hypertrophy significantly.

Noninvasive molecular biomarkers for the detection of colorectal cancer

  • Kim, Hye-Jung;Yu, Myeong-Hee;Kim, Ho-Guen;Byun, Jong-Hoe;Lee, Cheolju
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.685-692
    • /
    • 2008
  • Colorectal cancer (CRC) is the third most common malignancy in the world. Because CRC develops slowly from removable precancerous lesions, detection of the disease at an early stage during regular health examinations can reduce both the incidence and mortality of the disease. Although sigmoidoscopy offers significant improvements in the detection rate of CRC, its diagnostic value is limited by its high costs and inconvenience. Therefore, there is a compelling need for the identification of noninvasive biomarkers that can enable earlier detection of CRC. Accordingly, many validation studies have been conducted to evaluate genetic, epigenetic or protein markers that can be detected in the stool or in serum. Currently, the fecal-occult blood test is the most widely used method of screening for CRC. However, advances in genomics and proteomics combined with developments in other relevant fields will lead to the discovery of novel non invasive biomarkers whose usefulness will be tested in larger validation studies. Here, non-invasive molecular biomarkers that are currently used in clinical settings and have the potential for use as CRC biomarkers are discussed.

High Intensity Focused Ultrasound for Cancer Treatment: Current Agenda and the Latest Technology Trends (HIFU: 현황 및 기술적 동향)

  • Seo, Jong-Bum
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2E
    • /
    • pp.55-63
    • /
    • 2010
  • High Intensity Focused Ultrasound (HIFU) is a noninvasive surgical method mainly targeting deeply located cancer tissue. Ultrasound is generated from an extemally located transducer and the beam is focused at the target volume, so that selective damage can be achieved without harm to overlying or surrounding tissues. The mechanism for cell killing can be combination of thermal and cavitational damage. Although cavitation can be an effective means of tissue destruction, the possibility of massive hemorrhage and the unpredictable nature of cavitational events prevent clinical application of cavitation. Hence, thermal damage has been a main focus related to HIFU research. 2D phased array transducer systems allow electronic scanning of focus, multi-foci, and anti-focus with multi-foci, so that HIFU becomes more applicable in clinical use. Currently, lack of noninvasive monitoring means of HIFU is the main factor to limit clinical applications, but development in MRI and Ultrasound Imaging techniques may be able to provide solutions to overcome this problem. With the development of advanced focusing algorithm and monitoring means, complete noninvasive surgery is expected to be implemented in the near future.

Urinary Biomarkers for the Noninvasive Detection of Gastric Cancer

  • Li, Dehong;Yan, Li;Lin, Fugui;Yuan, Xiumei;Yang, Xingwen;Yang, Xiaoyan;Wei, Lianhua;Yang, Yang;Lu, Yan
    • Journal of Gastric Cancer
    • /
    • v.22 no.4
    • /
    • pp.306-318
    • /
    • 2022
  • Gastric cancer (GC) is associated with high morbidity and mortality rates. Thus, early diagnosis is important to improve disease prognosis. Endoscopic assessment represents the most reliable imaging method for GC diagnosis; however, it is semi-invasive and costly and heavily depends on the skills of the endoscopist, which limit its clinical applicability. Therefore, the search for new sensitive biomarkers for the early detection of GC using noninvasive sampling collection methods has attracted much attention among scientists. Urine is considered an ideal biofluid, as it is readily accessible, less complex, and relatively stable than plasma and serum. Over the years, substantial progress has been made in screening for potential urinary biomarkers for GC. This review explores the possible applications and limitations of urinary biomarkers in GC detection and diagnosis.

Validation of fetus aneuploidy in 221 Korean clinical samples using noninvasive chromosome examination: Clinical laboratory improvement amendments-certified noninvasive prenatal test

  • Kim, Min-Jeong;Kwon, Chang Hyuk;Kim, Dong-In;Im, Hee Su;Park, Sungil;Kim, Ji Ho;Bae, Jin-Sik;Lee, Myunghee;Lee, Min Seob
    • Journal of Genetic Medicine
    • /
    • v.12 no.2
    • /
    • pp.79-84
    • /
    • 2015
  • Purpose: We developed and validated a fetal trisomy detection method for use as a noninvasive prenatal test (NIPT) including a Clinical Laboratory Improvement Amendments (CLIA)-certified bioinformatics pipeline on a cloud-based computing system using both Illumina and Life Technology sequencing platforms for 221 Korean clinical samples. We determined the necessary proportions of the fetal fraction in the cell-free DNA (cfDNA) sample for NIPT of trisomies 13, 18, and 21 through a limit of quantification (LOQ) test. Materials and Methods: Next-generation sequencing libraries from 221 clinical samples and three positive controls were generated using Illumina and Life Technology chemistries. Sequencing results were uploaded to a cloud and mapped on the human reference genome (GRCh37/hg19) using bioinformatics tools. Based on Z-scores calculated by normalization of the mapped read counts, final aneuploidy reports were automatically generated for fetal aneuploidy determination. Results: We identified in total 29 aneuploid samples, and additional analytical methods performed to confirm the results showed that one of these was a false-positive. The LOQ test showed that the proportion of fetal fraction in the cfDNA sample would affect the interpretation of the aneuploidy results. Conclusion: Noninvasive chromosome examination (NICE), a CLIA-certified NIPT with a cloud-based bioinformatics platform, showed unambiguous success in fetus aneuploidy detection.

Radial Electrical Impedance: A Potential Indicator for Noninvasive Cuffless Blood Pressure Measurement

  • Huynh, Toan Huu;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.239-244
    • /
    • 2017
  • Noninvasive, cuffless, and continuous blood pressure (BP) monitoring is essential to prevent and control hypertension. A well-known existing method for this measurement is pulse transit time (PTT), which has been investigated by many researchers as a promising approach. However, the fundamental principle of the PTT method is based on the time interval taken by a pulse wave to propagate between the proximal and distal arterial sites. Consequently, this method needs an independent system with two devices placed at two different sites, which is a problem. Even though some studies attempted to synchronize the system, it is bulky and inconvenient by contemporary standards. To find a more sensitive method to be used in a BP measurement device, this study used radial electrical bioimpedance (REB) as a potential indicator for BP determination. Only one impedance plethysmography channel at the wrist is performed for demonstrating a ubiquitous BP wearable device. The experiment was evaluated on eight healthy subjects with the ambulatory BP monitor on the upper arm as a reference. The results demonstrated the potential of the proposed method by the correlation of estimated systolic (SBP) and diastolic (DBP) BP against the reference at $0.84{\pm}0.05$ and $0.83{\pm}0.05$, respectively. REB also tracked the DBP well with a root-mean-squared-error of $7.5{\pm}1.35mmHg$.

Implementation and Evaluation of the LUTS Diagnosis System Using FPGA (FPGA를 이용한 LUTS 진단 시스템 구현 및 평가)

  • Jeong, Do-Un;Chung, Wan-Young;Jeon, Gye-Rock
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.1
    • /
    • pp.6-14
    • /
    • 2007
  • The purpose of urodynamic investigation is to determine information on the function of the urinary system. One of the most frequently used measurement procedures in urodynamics is filling and voiding cystometry using invasive method. But in this method transurethral catheter is use and it makes patients uncomfortable. The aim of this study was to implement the system that could evaluate the function of urinary tract with noninvasive and comfortable method. Therefor in this study, a sensor and measuring system were implemented to measure uroflow, urophonography and noninvasive bladder pressure signal during urination for diagnosing the LUTS(lower urinary tract symptoms) using noninvasive method. The implemented system compose of the sensor parts, signal conditioning parts, system control parts using FPGA and PC monitoring program. For the evaluation of the implemented system, the simulation of system's control part was performed and the model system for the lower urinary system was designed. From the evaluation of the model system, the mean error rate of the uroflow measurement part was 1.08% and coefficient of variation was 1,48. And the mean error rate of the noninvasive bladder pressure measurement part was 2.41% and coefficient of variation was 2.81. urophongraphy signal analysis was accomplished in a time domain and frequency domain. Average RMS power was used in a time domain analysis, and MF was used in a frequency domain analysis. From the evaluation of the model system average RMS power and MF was dependent on the occlusion degree significantly and median frequency range of $60{\sim}160Hz$ was correlated with the occlusion.

  • PDF

A New Method for the Identification of Joint Mechanical Properties (관절계 역학적 특성의 정량적 평가방법)

  • 엄광문;김석주;한태륜
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.209-218
    • /
    • 2004
  • The purpose of this paper is to suggest a practical and simple method for the identification of the joint mechanical properties and to apply it to human knee joints. The passive moment at a joint was modeled by three mechanical parts, that is, a gravity term, a linear damper term and a nonlinear spring term. Passive pendulum tests were performed in 5 fat and 5 thin men. The data of pendulum test were used to identify the mechanical properties of joints through sequential quadratic programming (SQP) with random initial values. The identification was successful where the normalized root-mean-squared (RMS) errors between the simulated and experimental joint angle trajectories were less than 10%. The parameter values of mechanical properties obtained in this study agreed with literature. The inertia, gravity and the damping constant were greater at fat men, which indicates more resistance to body movement and more energy consumption fer fat men. The suggested method is noninvasive and requires simple setup and short measurement time. It is expected to be useful in the evaluation of joint pathologies.

Scintigraphic Evaluation of Gastrointestinal Motility Disorders (기능성 위장관 질환에서 핵의학 검사의 역할)

  • Choe, Jae-Gol
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • Current scintigraphic tests of gastrointestinal motor function provides relevant pathophysiologic information, but their clinical utility is controversial. Many scintigraphic methods are developed to investigate gastrointestinal motility from oral cavity to colon. These are esophageal transit scintigraphy, oropharyngeal transit study, gastric emptying test, small bowel transit time measurement, colon transit study and gastroesopahgeal reflux scintigraphy. Scintigraphy of gastrointestinal tract is the most physiologic and noninvasive method to evaluate gastrointestinal motility disorders. Stomach emptying test is regarded as a gold standard in motility study. Gastrointestinal transit scintigraphy also has a certain role in assessment of drug effect to GI motility and changes alter therapy of motility disorders. Scintigraphy provides noninvasive and quantitative assessment of physiological transit throughout the gastrointestinal tract, and it is extremely useful for diagnosing gastrointestinal motor dysfunction. This article reviews the current procedures, indications, significance and guidelines for gastrointestinal motility measurements by scintigraphy.

  • PDF