• Title/Summary/Keyword: Nonflammable Inorganic material

Search Result 5, Processing Time 0.022 seconds

A study on the Application of Inorganic Reinforced Non-Flammable Molding to Building Exterior (무기계보강 CLC 불연몰딩의 건축물 외벽적용 연구)

  • Kwon, Hae-Won;Gong, Min-Ho;Lee, Chang-Woo;Choi, Byung-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.61-62
    • /
    • 2021
  • Exterior wall molding, which is widely applied as a design element of the exterior wall of domestic apartment, should be applied as a nonflammable or semi-nonflammable material grade according to the rules on standards for evacuation/fire protection structures of buildings. For this reason, stone and AL sheet are mainly used, but stone is expensive and design autonomy is low. Inorganic reinforced CLC nonflammable molding was applied to the exterior wall of the building through tests of nonflammable performance, noise reduction, and installation stability.

  • PDF

A Study on the Physical Properties of Mineral Hydrate Insulation Material Mixed with Basalt Fiber

  • Park, Jae-Wan;Chu, Yong-Sik;Seo, Sung-Kwan;Jeong, Jae-Hyen
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.63-67
    • /
    • 2016
  • Mineral hydrate is a new insulation material that compensates for the defects of existing materials. Mineral hydrate is made of inorganic ingredients; therefore, it is nonflammable. The porous structure of mineral hydrate makes the material lightweight and insulating. Mineral hydrate insulation and similar products have been studied and manufactured in Korea and abroad. However, these insulation materials need to improve in terms of strength. In this study, basalt fiber was used to enhance the strength. In order to observe the property changes, compressive strength, heat conductivity, and specific gravity were measured and XRD pattern analysis was performed. These tests confirmed that basalt fiber was effective at improving the strength and lowering the heat conductivity of mineral hydrate insulation.

A Study on the Cone Calorimeter Evaluation Method of Sandwich Panels (복합자재 콘칼로리미터평가방법에 대한 연구)

  • Park, Jung-Woo;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.74-82
    • /
    • 2017
  • Fires in buildings built using sandwich panels are difficult to extinguish, and the damage caused by the fire spreading through the inner core material is extensive. Sandwich panels consist of a nonflammable material on both sides of an insulation material. The types of insulation material include organic and inorganic insulation materials, but the former are used in more than 80% of the case. Organic insulation is economically advantageous compared to inorganic insulation, but it is vulnerable to fire. Therefore, the damage caused by sandwich panel fires is higher than that for general fires. In the case of the noxious gas analyzer test, the panel is tested with three round holes having a diameter of 25 mm, in order to determine the risk of the core material, but the cone calorimeter test is carried out using a sandwich panel. In this study, the cone calorimeter test was conducted to examine the fire risk of the composite material when heated on a nonflammable surface, exposed to the core material through a hole, and heated directly the core material. The type of organic insulation employed was flame retardant EPS (Expanded Polystyrene), and the test specimens were tested in three types of sandwich panel, a perforated sandwich panel and single core material. The purpose of this study is to propose a method of measuring the fire risk of the core materials of composite materials using the cone calorimeter test.

Development and Performance Evaluation of Non-flammable Mineral Foam Board Using Waste Glass (폐유리를 활용한 불연 무기물 발포 보드 개발 및 성능평가)

  • Kim, Hyen-Soo;Choi, Won-Young;Kim, Sang-Heon;Choi, Seung-Hwan;Park, Soon-Don
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • In this study, non-flammable mineral foam board using waste glass that can be produced to standardized specifications were developed and evaluated for the performance. In addition to the physical and mechanical performance, the environmental properties such as insulation, non-combustibility, gas hazard, sound absorption, etc. were tested to verify the use as interior and exterior building materials. Through the structural review, the validity was verified for the application of the office and restaurant building.

Combustion Characteristics of Bamboo Charcoal Boards (대나무숯 성형보드의 연소특성)

  • Park, Sang-Bum;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • The fire retardant bamboo charcoal (BC) boards were manufactured for interior building materials in this study, The BC boards were manufactured by mixing and pressing of the bamboo charcoal, expanded vermiculite, and inorganic binder. The combustion behaviors of the BC boards were investigated using a cone calorimeter at an incident heat flux of 50 kW/$m^2$. Three building materials (plywood, BC board of Japan, and gypsum board) were used to observe the burning behaviors of weight loss, total heat release rate, and maximum heat release rate. Surface test and toxicity evaluation of the BC board were also conducted. The weight loss of the BC board (12.0%) was lower than the nonflammable gypsum board (15.6%) after burning of 10 min. Total heat release of the BC was 3 MJ/$m^2$ (KS standard 8 MJ/$m^2$) and total heat release rate of the BC was 20 kW/$m^2$ (KS standard 200 kW/$m^2$). Therefore, the BC boards were adjustable for the third-grade flame retardant building materials. External appearance change and mouse toxicity were not found in the BC boards after the combustion test.