• 제목/요약/키워드: Nondimensional analysis

검색결과 74건 처리시간 0.021초

주기적 불안정성을 가지는 충격파 유도 연소의 무차원 해석 (Nondimensional Analysis of Periodically Unstable Shock-Induced Combustion)

  • 최정열;정인석;윤영빈
    • 한국연소학회지
    • /
    • 제1권2호
    • /
    • pp.41-49
    • /
    • 1996
  • A numerical study is conducted to investigate the periodically unstable shock induced combustion around blunt bodies in stoichiometric hydrogen-air mixtures. Euler equations are spatially discretized by upwind-biased third order scheme and temporally integrated by Runge-Kutta method. Chemistry model used in this study involves 8 elementary kinetics steps and 7 species. At a constant Mach number, the effects of projectile size, inflow pressure and inflow temperature are examined with Lehr#s experimental condition as a reference. In addition to oscillation frequency, characteristic distances and time averaged values are found from the result to find an relation with dimensionless parameters. As a result, it is found that the effects of inflow pressure and body size are very similar and $Damk{\ddot{o}}hler$ number plays an important role in determining the instability characteristics.

  • PDF

내부에 유체가 흐르는 파이프계의 동적안정성 및 응답해석 (Dynamic Stability and Response Analysis of Piping System with Internal Flow)

  • 이우식;박철희;홍성철
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1861-1871
    • /
    • 1991
  • 본 연구에서는 아직까지 연구가 미진한 내용 즉, 유속과 압력이 시간과 위치 의 함수인 유동특성과 파이프의 운동이 상호 연계되어 영향을 주는 일반적인 경우의 운동방정식을 유도하였고 단순지지된 직선 파이프를 모델로 설정하여 동적 안정성 (dynamic stability)과 진동응답을 수치적으로 고찰하였다.

횡하중을 받는 반강접 철골 골조의 유연도에 관한 연구( I ) -접합부 해석모형을 중심으로- (A Study on the Flexibility of Semi-Rigid Steel Frames under Lateral Loadings( I ))

  • 강철규;한영철;이갑조
    • 한국강구조학회 논문집
    • /
    • 제8권3호통권28호
    • /
    • pp.127-137
    • /
    • 1996
  • Connections as basic elements and an integrated part of a steel frame has an effect on the frame's performance. Conventional analysis and design techniques are based on either idealized fixed or pinned conditions. In fact, the use of rigid or pinned connection model in steel frame analysis serves the purpose of simplifying the analysis and design processes, but all connections used in current pratice possess stiffness and transfer moment which fall between the extreme cases of fully rigid and ideally pinned. To predict the behavior of the semi-rigid steel frames, it is necessary to predict the moment-rotation behavior of the beam-to-column connections. In this research, prediction equation for moment-rotation behavior of the beam-to-column connection is suggested and the effect of design parameters has investigated. Prediction model, in a nondimensional form shows the moment-rotation characteristic for connections. It is composed of the curve fitting power function using standardization constant K and 4 parameter $KM_o$, ${\theta}_0$, b, n based on the pretest result about moment-rotation behavior of connection.

  • PDF

Free vibration analysis of a rotating non-uniform functionally graded beam

  • Ebrahimi, Farzad;Dashti, Samaneh
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1279-1298
    • /
    • 2015
  • In this paper, free vibration characteristics of a rotating double tapered functionally graded beam is investigated. Material properties of the beam vary continuously through thickness direction according to the power-law distribution of the volume fraction of the constituents. The governing differential equations of motion are derived using the Hamilton's principle and solved utilizing an efficient and semi-analytical technique called the Differential Transform Method (DTM). Several important aspects such as taper ratios, rotational speed, hub radius, as well as the material volume fraction index which have impacts on natural frequencies of such beams are investigated and discussed in detail. Numerical results are tabulated in several tables and figures. In order to demonstrate the validity and accuracy of the current analysis, some of present results are compared with previous results in the literature and an excellent agreement is observed. It is showed that the natural frequencies of an FG rotating double tapered beam can be obtained with high accuracy by using DTM. It is also observed that nondimensional rotational speed, height taper ratio, power-law exponent significantly affect the natural frequencies of the FG double tapered beam while the effects of hub radius and breadth taper ratio are negligible.

Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings

  • Hosseini, Seyyed A.H.;Khosravi, Farshad
    • Advances in nano research
    • /
    • 제8권1호
    • /
    • pp.25-36
    • /
    • 2020
  • Rotating systems concern with torsional vibration, and it should be considered in vibration analysis. To do this, the time-dependent torsional vibrations in a single-walled carbon nanotube (SWCNT) under the linear and harmonic external torque, are investigated in this paper. Eringen's nonlocal elasticity theory is considered to demonstrate the nonlocality and constitutive relations. Hamilton's principle is established to derive the governing equation of motion and consequently related boundary conditions. An analytical method, called the Galerkin method, is utilized to discretize the driven differential equations. Linear and harmonic torsional loads, along with determined amplitude, are applied to the SWCNT as the external torques. SWCNT is considered under the clamped-clamped end supports. In free vibration, analysis of small scale effect reveals the capability of natural frequencies in different modes, and this results desirably are in coincidence with another study. The forced torsional vibration in the time domain, especially for carbon nanotubes, has not been done before in the previous works. The previous forced studies were devoted to the transverse vibrations. It should be emphasized that the dynamical analysis of torsion is novel, workable, and at the beginning of the path. The variations of nonlocal parameter, CNT's thickness, and the influence of excitation frequency on time-dependent angular displacement and nondimensional angular displacement are investigated in the context.

확률론적 손상을 고려한 VLCC 잔류 종강도 평가 (Residual Longitudinal Strength of a VLCC Considering Probabilistic Damage Extents)

  • 남지명;정준모;박노식
    • 대한조선학회논문집
    • /
    • 제49권2호
    • /
    • pp.124-131
    • /
    • 2012
  • This paper provides prediction of ultimate longitudinal strengths of hull girder of a VLCC considering probabilistic damage extents due to collision and grounding accidents based on IMO Guideline(2003). The probability density functions of damage extents are expressed as a function of nondimensional damage variables. The accumulated probability levels of 10%, 30%, 50%, and 70% are taken into account for the damage extent estimation. The ultimate strengths have been calculated using in-house software UMADS (Ultimate Moment Analysis of Damaged Ships) which is based on the progressive collapse method. Damage indices are provided for all heeling angles due to any possible flooding of compartments from $0^{\circ}$ to $180^{\circ}$ which represent from sagging to hogging conditions, respectively. The analysis results reveal that minimum damage indices show different values according to heeling angles and damage levels.

Stability analysis of bimodular pin-ended slender rod

  • Yao, Wenjuan;Ma, Jianwei;Hu, Baolin
    • Structural Engineering and Mechanics
    • /
    • 제40권4호
    • /
    • pp.563-581
    • /
    • 2011
  • Many novel materials, developed in recent years, have obvious properties with different modulus of elasticity in tension and compression. The ratio of their tensile modulus to compressive modulus is as high as five times. Nowadays, it has become a new trend to study the mechanical properties of these bimodular materials. At the present stage, there are extensive studies related to the strength analysis of bimodular structures, but the investigation of the buckling stability problem of bimodular rods seems to cover new ground. In this article, a semi-analytical method is proposed to acquire the buckling critical load of bimodular slender rod. By introducing non-dimensional parameters, the position of neutral axis of the bimodular rod in the critical state can be determined. Then by combining the phased integration method, the deflection differential equation of bimodular pin-ended slender rod is deduced. In addition, the buckling critical load is obtained by solving this equation. An example, which is conducted by comparing the calculation results between the three of the methods including the laboratory tests, numerical simulation method and the method we developed here, shows that the method proposed in the present work is reliable to use. Furthermore, the influence of bimodular characteristics on the stability is discussed and analyzed.

CNT의 동적 거동 해석을 위한 정전기력의 선형화 (Linearized of Electrostatic Force in the Carbon Nanotube for Dynamic Behavior Analysis)

  • 이종길
    • 대한공업교육학회지
    • /
    • 제30권2호
    • /
    • pp.115-122
    • /
    • 2005
  • For an analysis of dynamic behavior in carbon nanotube(CNT) which is widely used as micro and nano-sensors, an electrostatic force of CNT was investigated. For larger gaps in between sensor and electrode the van der Waals force can be ignored. The boundary condition in the CNT was assumed to clamped-clamped case at both ends. In this paper electrostatic force is expressed as linear equation along deflection using Taylor series. The first and second terms(${\zeta}_0$ and ${\zeta}_1$) of the linear equation are analyzed. Based on the simulation results nondimensional number ${\Phi}_0$ and ${\Phi}_1$ which came from ${\zeta}_0$ and ${\zeta}_1$ were decreased according to the increment of the gap. Reduction ratio of the second term ${\zeta}_1$ is increased up to 99% along to the increment of the gap. The higher order terms can be ignored and therefore, electrostatic force can be expressed using the first two terms of the linear equation. This results play an important role in analyzing the nonlinear dynamic behavior of the CNT as well as the pull-in voltage of simply supported switches.

배열회수 보일러 단일 휜튜브의 양력과 항력 변동에 따른 PSD 특성 연구 (The Power Spectral Density Characteristics of Lift and Drag Fluctuation of Fin Tube in a Heat Recovery Steam Generator)

  • 하지수;이부윤
    • 한국가스학회지
    • /
    • 제20권2호
    • /
    • pp.23-29
    • /
    • 2016
  • 배열회수 보일러의 전열관군은 외부에 고온의 배기가스가 흐르면서 유동 유발 진동을 야기 시키며 배열회수 보일러의 전열관군에서 파손을 야기할 수 있어서 열교환기의 구조적 안정성을 위해 열교환기의 전열관군에서 유동 유발 진동 특성을 규명할 필요가 있다. 일반적인 열교환기 전열관군에서 유동 유발 진동에 관한 실험적 연구는 기존에 많이 진행되어 오고 있으며 단일 원관이나 전열관군의 원관들에서 유동 유발 진동에 대한 무차원 PSD(Power Spectral Density) 함수를 무차원 주파수인 Strouhal 수, fD/U의 함수로 도출된 실험적 결과들이 도출되어 있다. 본 연구는 배열회수 보일러에 사용하는 휜튜브 전열관군에서 유동 유발 진동 특성을 규명하는 것을 목적으로 한다. 이러한 것을 위해 단일 휜튜브에서 비정상 상태 유동해석을 수행하여 주기적인 와동 발생 특성과 단일 휜튜브에서의 양력과 항력 변화 특성을 살펴보았다. 또한 단일 휜튜브에서 양력과 항력 변동 특성으로부터 유동 유발 진동에 따른 PSD 특성 결과를 도출하여 기존에 단순 원관에서 이루어졌던 연구들과 비교를 통해 단일 휜튜브 주위의 PSD 특성을 정립하였다.

배열회수 보일러 단일 휜튜브의 양력 변동 PSD 특성 연구 (A Study on the Characteristics of Lift Fluctuation Power Spectral Density on a Fin Tube in the Heat Recovery Steam Generator)

  • 하지수;이부윤;심성훈
    • 에너지공학
    • /
    • 제24권4호
    • /
    • pp.211-216
    • /
    • 2015
  • 배열회수 보일러의 전열관군은 외부에 고온의 배기가스가 흐르면서 유동 유발 진동을 야기 시키며 배열회수 보일러의 전열관군에서 파손을 야기할 수 있어서 열교환기의 구조적 안정성을 위해 열교환기의 전열관군에서 유동 유발 진동 특성을 규명할 필요가 있다. 일반적인 열교환기 전열관군에서 유동 유발 진동에 관한 실험적 연구는 기존에 많이 진행되어 오고 있으며 단일 원관이나 전열관군의 원관들에서 유동 유발 진동에 대한 무차원 PSD(Power Spectral Density) 함수를 무차원 주파수인 Strouhal 수, fD/U의 함수로 도출된 실험적 결과들이 도출되어 있다. 본 연구는 배열회수 보일러에 사용하는 휜튜브 전열관군에서 유동 유발 진동 특성을 규명하는 것을 목적으로 한다. 이러한 것을 위해 단일 휜튜브 원관에서 비정상 상태 유동해석을 수행하여 주기적인 와동 발생 특성과 휜튜브 원관에서의 양력 변화 특성을 살펴보았다. 또한 휜튜브 원관에서 양력 변동 특성으로부터 유동 유발 진동에 따른 PSD 특성 결과를 도출하여 기존에 단순 원관에서 이루어졌던 연구들과 비교를 통해 휜튜브 원관 주위의 PSD 특성을 정립하였다.