• Title/Summary/Keyword: Nondestructive Testing (NDT)

Search Result 117, Processing Time 0.022 seconds

A Study on the Determination of Concrete Thickness and Effective Measurement Area using Radar (레이더를 이용한 콘크리트의 두께 측정과 유효 측정범위 설정에 관한 연구)

  • Rhim, Hong-Chul;Lee, Ji-Hoon;Son, Byung-Oh
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.296-304
    • /
    • 2000
  • Radar is becoming a popular tool for condition assessment of concrete structures. The advancement of radar method to concrete structures requires a systematic approach, which incorporates the fundamentals of radar theory and the characteristics of concrete as a material with electromagnetic properties. The research work presented in this paper deals with the establishment of effective measurement area for radar measurements, the determination of concrete thickness using radar, and the calculation of the dielectric constant of concrete from radar measurements. As results, formulas have been suggested to determine optimum measurement area for concrete, using radar and concrete thickness has been successfully identified for specimens used in this work. In the experiments, five concrete specimens which have the dimensions of 900mm (length) $\times$ 600mm (width) with thickness variation from 50mm to 250mm are used.

  • PDF

A Study on the Modeling of Electromagnetic Wave Propagation for the Detection of a Delamination in Concrete Specimens (콘크리트 내의 공동탐사를 위한 전자기파 모델링)

  • 조윤범;임홍철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.119-124
    • /
    • 2000
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. Three concrete specimens with a 25 mm delamination embedded at 25 mm, 50 mm, and 75mm depth are modeled in 3-dimension. Also, thickness change of delamination and permittivity change are modeled.

  • PDF

Attenuation of Fundamental Longitudinal Guided Wave Mode in Steel Pipes Embedded in Soil

  • Lee, Ju-Won;Shin, Sung-Woo;Na, Won-Bae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.539-547
    • /
    • 2010
  • In this study, characteristics of the fundamental longitudinal guided wave mode, L(0,1), which is a usual mode employed in the inspection of the above-ground pipe, of the buried pipe were numerically investigated considering property changes in the surrounding soil. Results showed that soil conditions are significantly affecting the attenuation of L(0,1) mode in the pipe embedded in soil. Especially, if the soil is partially saturated, the attenuation of L(0,1) mode is larger and is very similar regardless of the degree of water saturation in the surrounding soil. However, when the soil is fully saturated, the attenuation of L(0,1) mode is less and show different trend with its partially saturated counterparts.

PVDF interdigitated transducer for generating and detecting Lamb waves in plates

  • Gu, Hua;Lloyd, George M.;Wang, Ming L.
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.291-304
    • /
    • 2008
  • Piezoelectric materials have been widely used in ultrasonic nondestructive testing (NDT). PZT ceramics can be used to receive and generate surface acoustic waves. It is a common application to attach PZT transducers to the surface of structures for detecting cracks in nondestructive testing. However, not until recently have piezoelectric polymers attracted more and more attention to be the material for interdigitated (IDT) surface and guided-wave transducers. In this paper, an interdigitated gold-on-polyvinylidene fluoride (PVDF) transducer for actuating and sensing Lamb waves has been introduced. A specific etching technology is employed for making the surface electrodes into a certain finger pattern, the spacings of which yield different single mode responses of Lamb waves. Experiments have been performed on steel and carbon fiber composite plates. Results from PVDF IDT sensors have been compared with those from PZT transducers for verification.

Application of Modeling of Electromagnetic Wave Propagation for Thickness Determination Using Finite Difference-Time Domain (유한차분 시간영역법을 이용한 콘크리트 두께측정 전자파 모델링의 적용)

  • 임홍철;남국광
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.341-349
    • /
    • 2002
  • The radar method is becoming one of the major nondestructive testing(NDT) techniques lot concrete structures. Numerical modeling of electromagnetic wane is needed to analyze radar measurement results. Finite difference-time domain(FD-TD) method can be used to simulate electromagnetic wave propagation through concrete specimens. Five concrete specimens with different thickness are modeled in 3-dimension. Radar modeling results compare measurement results to find backface of the concrete specimens and measure thickness of the concrete specimens.

Application on the Modeling Rusults of GPR Wave Propagation through Concrete Specimens for Rebar Detection In Concrete Specimens (전자파 모델링을 이용한 콘크리트 내 철근탐사)

  • 남국광;임홍철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.135-140
    • /
    • 2001
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. In the experiments, three concrete specimens are made with the dimensions of 100 cm (length) x 100 cm (wideth) x 14 cm (depth). Three specimens had a Dl6 steel bar at 8, 10, 12 cm depth.

  • PDF

2-D Modeling of Electromagnetic Waves for the Probing of Concrete (콘크리트 내부 탐사를 위한 전자기파의 2차원 모델링)

  • 조윤범;임홍철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.18-23
    • /
    • 2000
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. Three concrete specimens with a 19.1 mm rebar embedded at 40 mm, 60 mm, and 80 mm depth are modeled in 3-dimension. As results, 2-D image processing scheme of modeling data has been developed and applied to the imaging of steel bars inside concrete.

  • PDF

Imaging of Steel Bars Embedded inside Mortar Specimens for Nondestructive Testing

  • Rhim, Hong-Chul;Park, Kyung-Hyun
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.139-144
    • /
    • 2000
  • Ground Penetrating Radar (GPR) with 1 GHz antenna has been used to locate a steel bar embedded inside laboratory-prepared mortar specimens. Four mortar specimens are made with the dimensions of 100 cm (length) x 100 cm (width) x 14 cm (depth). One specimen had no bars and the other three specimens had a Dl9 steel bar at 4, 6. and 8 cm depth. As a part of the experimental work, the dielectric constants of mortar specimens are measured during curing. As the curing time increased. the dielectric constant decreased with decreasing moisture content inside the specimen. The steel bar embedded inside mortar specimens has been successfully identified in all three cases. The results using signal processing scheme developed in this study significantly improved the output of a commercially available radar system.

  • PDF

Development of MFL Testing System for the Inspection of Storage Tank Floor (저장탱크 바닥면 검사를 위한 누설자속 탐상 시스템 개발)

  • Won, Soon-Ho;Cho, Kyung-Shik;Lee, Jong-O;Chang, Hong-Keun;Joo, Gwang-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.38-44
    • /
    • 2002
  • MFL method is a qualitative inspection tool and is a reliable, fast and economical NDT method. The application of MFL method to the inspection of storage tank floor plates has been shown to be a viable means. Examination of tank floors previously depended primarily upon ultrasonic test methods that required slow and painstaking application. Therefor most ultrasonic inspection of storage tank has been limited to spot testing only. Our NDE group have developed magnetic flux leakage system to overcome limitation of ultrasonic test. The developed system consists of magnetic yoke, array sensor, crawler and software. It is proved that the system is able to detect artificial flaw like 3.2mm diameter, 1.2mm depth in 6mm thick steel plate.

Comparison of Longitudinal Wave Velocity in Concrete by Ultrasonic Pulse Velocity Method and Impact-Echo Method (초음파 속도법과 충격반향기법에 의한 콘크리트의 종파 속도 비교)

  • Lee, Hoi-Keun;Lee, Kwang-Myong;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.98-106
    • /
    • 2003
  • Nondestructive test (NDT) provides much information on concrete without damage of structural functions. Of NDT methods, elastic wave propagation methods, such as ultrasonic pulse velocity (UPV) method and impact-echo (IE) method, have been successfully used to estimate the strength, elastic modulus, and Poisson's ratio of concrete as well as to detect the internal microstructural change and defects. In this study, the concretes with water-binder ratio ranging from 0.27 to 0.50 and fly ash content of 20% were made and then their longitudinal wave velocities were measured by UPV and IE method, respectively. Test results showed that the UPV is greater than the longitudinal wave velocity measured by the If method, i.e., rod-wave velocity obtained from the same concrete cylinder. It was found that the difference between the two types of velocities decreased with increasing the ages of concrete and strength level. Moreover, for the empirical formula, the dynamic Poisson's ratio, static and dynamic moduli of elasticity, and velocity-strength relationship were determined. It was observed that the Poisson's ratio and the modulus of elasticity determined by the dynamic method are greater than those determined by the static test. Consequently, for the more accurate estimation of concrete properties using the elastic wave velocities, the characteristics of these velocities should be understood.