• Title/Summary/Keyword: Nondestructive Analysis

Search Result 707, Processing Time 0.021 seconds

Evaluation of degradation in aged 2.25CrMo steel by electrical resistivity, magnetic Barkhausen noise and carbide analysis (전기비저항, 바크하우젠노이즈 및 탄화물 분석법을 이용한 2.25Cr-1Mo 강의 열화도 평가)

  • Byeon, Jai-Won;Pyo, S.W.;Kwun, S.I.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.210-215
    • /
    • 2001
  • The ferritic 2.25CrMo steel has been used for high temperature structure applications such as turbine rotors, boilers and pressure vessels in fossil plant and petroleum chemical facilities. However, this steel is known to result in aging degradation due to temper embrittlement, carbide induced brittleness and softening of matrix after long time exposure to high temperature. This research investigated the microstructural and mechanical changes after artificial degradation treatment and evaluated the degree of degradation by several nondestructive methods. The decrease of electrical resistivity and increase of magnetic Barkhausen noise(RMS voltage) with increasing aging time were observed. The change of electrical resistivity and Barkhausen noise showed a good correlation with the ductile-brittle transition temperature.

  • PDF

Reliability analysis for fatigue damage of railway welded bogies using Bayesian update based inspection

  • Zuo, Fang-Jun;Li, Yan-Feng;Huang, Hong-Zhong
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.193-200
    • /
    • 2018
  • From the viewpoint of engineering applications, the prediction of the failure of bogies plays an important role in preventing the occurrence of fatigue. Fatigue is a complex phenomenon affected by many uncertainties (such as load, environment, geometrical and material properties, and so on). The key to predict fatigue damage accurately is how to quantify these uncertainties. A Bayesian model is used to account for the uncertainty of various sources when predicting fatigue damage of structural components. In spite of improvements in the design of fatigue-sensitive structures, periodic non-destructive inspections are required for components. With the help of modern nondestructive inspection techniques, the fatigue flaws can be detected for bogie structures, and fatigue reliability can be updated by using Bayesian theorem with inspection data. A practical fatigue analysis of welded bogies is utilized to testify the effectiveness of the proposed methods.

A Study on the Thickness Measurement of Thin Film by Ultrasonic Wave (초음파(超音波)를 이용(利用)한 박막(薄膜)두께 측정(測定)에 관(關)한 연구(硏究))

  • Han, Eung-Kyo;Lee, Jae-Joon;Kim, Jae-Yeol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.7 no.2
    • /
    • pp.27-34
    • /
    • 1988
  • Recently, it is gradually raised necessity that thickness of thin film is measured accurately and managed in industrial circles and medical world. In this study, regarding to the thickness of film which is in opaque object and is beyond distance resolution capacity, thickness measurement was done by MEM-cepstrum analysis of received ultrasonic wave. In measurement results, film thickness which is beyond distance resolution capacity was measured accurately. And within thickness range that don't exist interference, thickness measurement by MEM-ceptrum analysis was impossible.

  • PDF

Comparison of Absolute and Differential ECT Signals around Tube Support Plate in Steam Generator

  • Shin, Young-Kil;Lee, Yun-Tai;Song, Myung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.201-208
    • /
    • 2005
  • In this paper, absolute and differential eddy current signals from various defects in the steam generator tube are numerically predicted and their signal slope characteristics are investigated. The signal changes due to frequency increase are also observed. After studying signal patterns from various defects and frequencies, the analysis of mixed defect signals affected by the presence of a ferromagnetic support plate is attempted. For the signal prediction, axisymmetric finite element modeling is used and this leads us to the slope angle analysis of the signal. Results show that differential signals are useful for locating the position of a defect under the support plate, while absolute signals are easy to presume and interpret even though the effect of support plate is mixed. Combined use of these two types of signals will help us accomplish a more reliable inspection.

A Method to Simulate Frictional Heating at Defects in Ultrasonic Infrared Thermography

  • Choi, Wonjae;Choi, Manyong;Park, Jeonghak
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.6
    • /
    • pp.407-413
    • /
    • 2015
  • Ultrasonic infrared thermography is an active thermography methods. In this method, mechanical energy is introduced to a structure, it is converted into heat energy at the defects, and an infrared camera detects the heat for inspection. The heat generation mechanisms are dependent on many factors such as structure characteristics, defect type, excitation method and contact condition, which make it difficult to predict heat distribution in ultrasonic infrared thermography. In this paper, a method to simulate frictional heating, known to be one of the main heat generation mechanisms at the closed defects in metal structures, is proposed for ultrasonic infrared thermography. This method uses linear vibration analysis results without considering the contact boundary condition at the defect so that it is intuitive and simple to implement. Its advantages and disadvantages are also discussed. The simulation results show good agreement with the modal analysis and experiment result.

Discrimination of Acoustic Emission Signals using Pattern Recognition Analysis (형상인식법을 이용한 음향방출신호의 분류)

  • Joo, Y.S.;Jung, H.K.;Sim, C.M.;Lim, H.T.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.2
    • /
    • pp.23-31
    • /
    • 1990
  • Acoustic Emission(AE) signals obtained during fracture toughness test and fatigue test for nuclear pressure vessel material(SA 508 cl.3) and artificial AE signals from pencil break and ultrasonic pulser were classified using pattern recognition methods. Three different classifiers ; namely Minimum Distance Classifier, Linear Discriminant Classifier and Maximum Likelihood Classifier were used for pattern recognition. In this study, the performance of each classifier was compared. The discrimination of AE signals from cracking and crack surface rubbing was possible and the analysis for crack propagation was applicable by pattern recognition methods.

  • PDF

Recent Ultrasonic Guided Wave Inspection Development Efforts

  • Rose, Joseph L.;Tittmann, Bernhard R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.371-382
    • /
    • 2001
  • The recognition of such natural wave guides as plates, rods, hollow cylinders, multi-layer structures or simply an interface between two materials combined with an increased understanding of the physics and wave mechanics of guided wave propagation has led to a significant increase in the number of guided wave inspection applications being developed each year. Of primary attention Is the ability to inspect partially hidden structures, hard to access areas, and teated or insulated structures. An introduction to some physical consideration of guided waves followed by some sample problem descriptions in pipe, ice detection, fouling detection in the foods industry, aircraft, tar coated structures and acoustic microscopy is presented in this paper. A sample problem in Boundary Element Modeling is also presented to illustrate the move in guided wave analysis beyond detection and location analysis to quantification.

  • PDF

Analysis of Surface Roughness by FFT Analyzer in Turning Operation (선반작업(旋盤作業)에서의 FFT Analyzer에 의한 표면(表面)거칠기 해석(解析))

  • Kim, Gyung-Nyun;Choi, Eun-Soon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.3
    • /
    • pp.12-19
    • /
    • 1992
  • This paper shows that the identified and unidentified components of surface roughness in NC turning lathe which can not be analyzed in time domain such as $R_{max},\;R_a$ can be isolated in frequency domain by FFT analyzer. By interfacing FFT analyzer with stylus surface roughness instrument, surface roughness on change of working condition, especially tool feed, such as 0.1, 0.15, 0.2, 0.25, 0.3(mm/rev) can be analyzed in frequency domain as follows. 1. By frequency analysis of surface roughness profile, the basic wave length of surface roughness can be obtained to isolate the identified and unidentified components of surface roughness. 2. With increase of tool feed, the unidentified components of surface roughness increase. 3. Since $R_{max}$, which can be obtained by stylus surface roughness is proportion to the output voltage of FFT analyzer, FFT analyzer also can be used to measure surface roughness in time domain such $R_a,\;R_{max}$.

  • PDF

Micro-Structure Measurement and Imaging Based on Digital Holography

  • Kim, Kyeong-Suk;Jung, Hyun-Chul;Chang, Ho-Seob;Kee, Chang-Doo;Akhter, Naseem
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.257-260
    • /
    • 2010
  • Advancements in the imaging and computing technology have opened the path to digital holography for non-destructive investigations of technical samples, material property measurement, vibration analysis, flow visualization and stress analysis in aerospace industry which has widened the application of digital holography in the above fields. In this paper, we demonstrate the non-destructive investigation and micro-structure measurement application of digital holography to the small particles and a biological sample. This paper gives a brief description of the digital holograms recorded with this system and illustratively demonstrated.

Parametric and Wavelet Analyses of Acoustic Emission Signals for the Identification of Failure Modes in CFRP Composites Using PZT and PVDF Sensors

  • Prasopchaichana, Kritsada;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.520-530
    • /
    • 2007
  • Combination of the parametric and the wavelet analyses of acoustic emission (AE) signals was applied to identify the failure modes in carbon fiber reinforced plastic (CFRP) composite laminates during tensile testing. AE signals detected by surface mounted lead-zirconate-titanate (PZT) and polyvinylidene fluoride (PVDF) sensors were analyzed by parametric analysis based on the time of occurrence which classifies AE signals corresponding to failure modes. The frequency band level-energy analysis can distinguish the dominant frequency band for each failure mode. It was observed that the same type of failure mechanism produced signals with different characteristics depending on the stacking sequences and the type of sensors. This indicates that the proposed method can identify the failure modes of the signals if the stacking sequences and the sensors used are known.