• Title/Summary/Keyword: Nondegradable

Search Result 12, Processing Time 0.023 seconds

A Study on the Treatment of Nondegradable Pollutants by Ultrasonic Irradiation (초음파에 의한 난분해성물질 처리에 관한 연구)

  • 손종열;모세영;문경환
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.3
    • /
    • pp.102-106
    • /
    • 1995
  • This study was performed to examine factors affecting the decompostion of nondegradable polluants(trichloroethylene(TCE), phenol) using ultrasonic irradiation. The TCE and phenol, which are major hazard compounds causing environmental pollution, were not decomposable pollutants by conventional treatment. The results show that the oxidation and reduction reaction of ultrasound produced $H_2O_2$, $H^+$ and $OH^-$ radical, which decomposed pollutants of TCE and phenol in water. It was confirmed that the ultrasonic irradiation showed an excellent removal efficiency for the nondegradable pollutants than any other processes, utilized in the treatment of organic compounds in the industrial wastewater. Conclusively, these results suggest that ultrasonic irradiation may be highly useful for the treatment of wastewaters contaminated organic pollutants, which is difficult to treat economically by conventional process.

  • PDF

Treatment of non-degrable Organic Pollutants in Aqueous by ultrasonic irradiation (초음파에 의한 수중의 난분해성 오염물질 처리)

  • 손종열;모세영;손진석
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.1
    • /
    • pp.76-84
    • /
    • 1995
  • This study was performed to examine the factors influenced on the decomposition of nondegradable organic pollutants( Tricholoroethylene,Benzene ) in aqueous by ultrasonic irradiation. The TCE( Tricholoroethylene ) and Benzene are major hazard compounds causing environmental Pollution and not decomposable substances by conventional treatment. The results shows that the oxidation and reduction reaction of ultrasonic Irradiation was formed the H$_{2}$O$_{2}$ , H$^{+}$ and OH$^{-}$ radical, and then theses was decomposed pollutants of TCE and Benzene in aqueous. We were conformed that the ultrasonic irradiation was excellent in removal efficiency of the nondegradable organic substances any other than processes and utilized the treatment of organic compounds in the industrial wastewater. Conclusively, these results suggest that ultrasonic irradiation may be extremely useful for the treatment of wastewater contaminated organic pollutants, which is difficult to treat economically by conventional treatment.

  • PDF

Treatment of nondegradable substances in wastewater by ultrasound (초음파를 이용한 난분해성 유해폐수물질 처리기술 개발)

  • 한국기계연구원
    • Environmental engineer
    • /
    • s.180
    • /
    • pp.68-73
    • /
    • 2001
  • 초음파에 의한 난분해성 유해폐수물질처리효과는 실험실차원에서는 이미 확인된 단계이며, 본연구에서는 초음파를 이용하여 일일처리능력 1.0톤/unit 용량의 산업폐수처리공정 개발을 목표로 하고 있다. 연구의 주요내용은 크게 초음파트랜스듀서자체의 출력향상과 초음파처리시스템처리효율 개선으로 나눌 수 있으며, 또한 제작된 처리시스템에 의한 적정 폐수처리조건과 미생물처리와의 조합공정 조건을 도출하는 것이 중요하다. 폐수처리의 성능향상을 위해서는 초음파출력향상이 우선

  • PDF

Poly-${\varepsilon}$-caprolactone(PCL) / Polyvinyl chloride(PVC) 블렌드의 기계적 성질 및 생분해성

  • Seo, Hae-Jeong;Ha, Gi-Ryong;Gang, Seon-Cheol
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.379-380
    • /
    • 2002
  • Biodegradable polymers have been regarded as a good alternative to solve the plastic waste problems caused by nondegradable synthetic polymers such as polyethylene and polystyrene. In the soil environment, plastics are mainly being used as a mulching film for agricultural purposes. In this research, the miscibility, tensile properties and biodegradation effect of poly-${\varepsilon}$-caprolactone(PCL) with polyvinyl chloride(PVC) have been studied. After 8 weeks of biodegradation, PCL/PVC(9/91) blend surface showed newly formed many holes. Consequently, the antiplasticization phenomenon and biodegradation were observed in the PCL/PVC blends. It was confirmed that a test for general biodegradation condition can be applied to plastic biodegradation in soil.

  • PDF

Fundamental Study on the Removal Properties of Polyethylene Glycols by Mesh Filtration Batch Bio-reactor (메쉬 침지여과분리형 회분식 생물반응조를 이용한 PEG제거의 기초 연구)

  • Jung, Yong-Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.502-506
    • /
    • 2009
  • The removal properties of Polyethylene glycols (PEGs) known as the important group of synthetic polymers of ethylene oxide were examined by the bio-reactor equipped with a mesh filter module. PEG-1000 and PEG-2000 were fairly removed on the basis of TOC, which were 75.1% and 51.6%, respectively. In the case of PEG-20000, the removal efficiency of TOC was less than 15.2% and the favorable acclimation of microbes was not obtained. It was suggested that this system could effectively maintain microbes for the biodegradation of low molecular weight of PEG and TOC removal was significantly influenced by PEG molecular weight.

A Study on Contaminant Sorption Capacity of Soil Liner for Seashore Waste Landfill by Using Column Test Apparatus (주상시험장치를 이용한 해안 폐기물 매립장 지반토지 오염물 흡착능에 관한 연구)

  • Jang, Yeon-Su;Han, Seong-Gil;Kim, Su-Sam
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.75-84
    • /
    • 1997
  • In this paper, the retardation capacity of marine clay and weathered soil of seashore waste landfill is analyzed by using a laboratory column apparatus for organic and inorganic components which can represent the components of the leachate of municipal waste landfill. The results show that sorption capacity marine clay for potassium is larger than that of weathered soil. Lead and cadmium are adsorbed completely at concentrations higher than the real concentrations developed in the landfill. The bottom soils of seashore landfill can also retard some nondegradable components of organics although their sorption capacities for organics were less than those for inorganics.

  • PDF

Studies on Preparation and Ion Exchange Characteristics of Humic Acid Membranes (Humic Acid 분리막의 제조와 이온교환 특성에 관한 연구)

  • 이용택
    • Membrane Journal
    • /
    • v.7 no.3
    • /
    • pp.136-141
    • /
    • 1997
  • Humic acid has been extracted and purified from biologically nondegradable humic substances. Using the ion exchange capability of carboxylic acids which are the main component of the humic acids, a membrane was prepared with poly(viny1 alcohol). Its transport behavior of biologically active ions, $K^+$and $Na^+$, were investigated. The ion transport velocity increased with hydrogen ion concentration, especially, in the range of $10^-1$~$10^0$. The selectivity increased with increasing the concentrations of $K^{+}$ and Na$^{+}$, In particular, the transport velocity of $K^+$ increased twice compared to that of $Na^+$ at the 100 hydrogen ion concentration. In this regards, humic acid may be used as a new material for ion exchange membranes.

  • PDF

A Study on the Adsorption Characteristics of Phenol in the presence of Humic Acid Using Activated Carbon Fiber (섬유상활성탄소를 이용한 Humic Acid 공존시 페놀의 흡착특성에 관한 연구)

  • Tak, Seong-Jae;Seo, Seong-Wen;Kim, Seong-Sun;Kim, Jin-Man
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.54-61
    • /
    • 2000
  • Recently, our circumstances are threatened by an accident that leakage of under ground storage tank and illegal dumping of synthetic organic compounds at chemical plants and many treatment methods, Activated carbon adsorption, Ozonization, Membrane filtration and Photocatalystic oxidation, are developed to remove such a synthetic organic compounds. And it has reported that Activated carbon adsorption have a great removal efficiency to nondegradable matters and organic compounds which have a high molecular weight. Comparing with other adsorbents, Activated carbon adsorption have a worse efficiency when ad desorption speed is low. Thus improved type of adsorbents was invented and one of those is Activated Carbon Filter. The purpose of this study was getting information about adsorption characteristic phenol which can be applied Activated Carbon Fiber and Granular Activated Carbon. In detail, With comparing removal characteristics of phenol in the presence Humic Acid using Activated Carbon Fiber(ACF) and Granular Activated. Carbon(GAC), it is to certify an effective application of Activated Carbon Fiber. At the range of this study, Batch test, Isotherm adsorption test and Factorial analysis, following conclusion were obtained from the results of this study. Batch test was carried to know time of adsorption equilibrium. In this study about time of adsorption equilibrium by ACF was faster than GAC's, for developed micropore of ACF. From the result of phenol adsorption test, High removal rate of adsorption is shown at pH 5. The result of lsotherm adsorption test, it has represented that the Freundlich's isotherm is most suitable one in others, that a ACF's adsorption capacity is more excellent than GAC's. Adsorption of phenol exiting humic acid is decreased getting raised humic acid concentration. Since ACF's micropore is developed at this time, an effect of high molecular humic acid is lower. Factorial analysis was carried to know about Main effect which was injection dosage of adsorbent in the range of this study.

  • PDF

Effect on Livestock Manure Composting by the Enriched Microbial Population (미생물에 의한 축산 폐기물 퇴비화에 미치는 영향)

  • 신혜자
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.129-135
    • /
    • 2002
  • Several kinds of thermophilic, aerobic microorganisms (Bacillus genus), metal leaching microorganisms (Thiobacillus, T. ferooxidans), and other nondegradable chemical-degrading microorganisms (Pseudomonas genus) were utilized to study the effect on composting livestock manure. Under the Carbon-Nitrogen ratio (C/N) of 35∼40 and water content of 50∼65% conditions, the composting in the cycling drum reactor showed slower composting and lower temperature increase than that of the manual reactor. Element analysis after composting indicated relatively high levels of mineral contents with the substitutional effect of chemical fertilizer. Metal analysis before and after composting showed lower As in all, Cr in pig, Pb in cow, Hg in chicken, and Cu in cow manure compost than the regulation values. Compost maturity was ascertained by the several maturity tests. Salmonella and E. cozi detection test by SS or EMB agar plate confirmed the safety from the pathogenic microorganisms. The results suggest that the inoculation of metal and some other chemical degrading microorganisms during composting might decrease metal contamination and increase composting rate.

Carbon Dioxide-reducible Biodegradable Polymers (이산화탄소 저감형 생분해성 고분자)

  • Lee, Won-Ki
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.191-200
    • /
    • 2011
  • Natural polymers, biopolymers, and synthetic polymers based on renewable resources are the basis for the 21th portfolio of sustainable and eco-friendly plastics but high-volume consumable plastics continue to be dominated by nondegradable petroleum-based materials. Three factors have recently made biodegradable polymers economically attractive: (i) rising costs of petroleum production resulting from the depletion of the most easily accessible reserves, (ii) environmental and economic concerns associated with waste plastics, and (iii) emissions of carbon dioxide from preparation of petroleum-based materials. These pressures have driven commercial applications based on biodegradable polymers which are related to reduction of carbon dioxide in processing, such poly(hydroxy alkanoate) and poly (lactide). Since initial degradation of these polymers leads to catastrophic mechanical failure, it is necessary to control the rate of initial degradation for commercial applications. In this article, we have a critic review on the recent progress of polymer modification for the control of degradation.