• Title/Summary/Keyword: Noncontact

Search Result 253, Processing Time 0.026 seconds

Application of Foil Air Bearing to Small Gas Turbine Engine for UAV (무인기용 소형 가스터빈 엔진에 대한 포일 공기 베어링 적용 연구)

  • Kim, Kyeong-Su;Lee, Si-Woo;Kim, Seung-Woo;Lee, In
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.261-266
    • /
    • 2003
  • Foil air bearing, which is a noncontact bearing utilizing viscosity of operating fluid and elastic deformation of foil structure, has several advantages over rolling element bearings in terms of oilless environment, long life, high speed operation, and high temperature application over $500^{\circ}C$ . Recently advanced researches are actively being performed for the application to the extreme temperature such as gas turbines, as well as conventional small turbo machinery. In this paper, the principle of foil air bearing is introduced and a feasibility study to adopt a foil bearing as the turbine bearing of 65 HP turbo shaft engine, which is under development for UAV, is presented.

  • PDF

Mode Characteristics Analysis of the SH-EMAT Waves for Evaluating the Thickness Reduction (두께감육 평가를 위한 SH-EMAT파의 모드특성 분석)

  • Park, I.K.;Kim, Y.K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.198-203
    • /
    • 2010
  • In this paper, study on the mode characteristics analysis of the SH-EMAT (shear horizontal, electromagnetic acoustic transducer) waves for evaluating the thickness reduction in plates such as corrosion and friction is presented. Noncontact methods for ultrasonic wave generation and detection have been a great concern and highly demanded due to their capability of wave generation and reception on surface of high temperature or on rough surface. Mode identification of the SH-EMAT wave is carried out in an aluminum plate with thinning defects using time frequency analysis method such as wavelet transform, compared with theoretically calculated group velocity dispersion curve. The changes of various wave features such as the amplitude and the time-of-flight have been observed and the correlations with the thickness reduction have been investigated. Firstly, experiments have been conducted to confirm that it is possible to selectively generate and receive specific desired SH modes. These modes have then been analyzed to select the parameters that are sensitive to the thickness change. The results show that the mode cutoff and the time-of-flight changes are feasible as key parameters to evaluate the thickness reduction.

Fatigue Crack Localization Using Laser Nonlinear Wave Modulation Spectroscopy (LNWMS)

  • Liu, Peipei;Sohn, Hoon;Kundu, Tribikram
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.419-427
    • /
    • 2014
  • Nonlinear features of ultrasonic waves are more sensitive to the presence of a fatigue crack than their linear counterparts are. For this reason, the use of nonlinear ultrasonic techniques to detect a fatigue crack at its early stage has been widely investigated. Of the different proposed techniques, laser nonlinear wave modulation spectroscopy (LNWMS) is unique because a pulse laser is used to exert a single broadband input and a noncontact measurement can be performed. Broadband excitation causes a nonlinear source to exhibit modulation at multiple spectral peaks owing to interactions among various input frequency components. A feature called maximum sideband peak count difference (MSPCD), which is extracted from the spectral plot, measures the degree of crack-induced material nonlinearity. First, the ratios of spectral peaks whose amplitudes are above a moving threshold to the total number of peaks are computed for spectral signals obtained from the pristine and the current state of a target structure. Then, the difference of these ratios are computed as a function of the moving threshold. Finally, the MSPCD is defined as the maximum difference between these ratios. The basic premise is that the MSPCD will increase as the nonlinearity of the material increases. This technique has been used successfully for localizing fatigue cracks in metallic plates.

Noncontact optical system for measurement of displacement and vibration (미소 변위 진동측정을 위한 광학 시스템 설계 및 제작)

  • Hwang, Woong;Kwon, Jin-Hyuk
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.260-265
    • /
    • 2003
  • A noncontact optical system that can measure displacement or vibration of an object is designed by employing the oblique ray method. By using a single convex lens which serves as both the input and output lenses, we made the optical system very compact and reliable. In addition, the bandwidth of the vibration measurement is more than 100 KHz by using the position-sensitive detector as the beam position sensor. The resolution and capture range of the system are $\pm$1 ${\mu}{\textrm}{m}$ and 1100 ${\mu}{\textrm}{m}$, respectively. As a sample test, the vibrations of a speaker and a rotating compact disc surface were measured.

Noncontact strain sensing in cement-based material using laser-induced fluorescence from nanotube-based skin

  • Meng, Wei;Bachilo, Sergei M.;Parol, Jafarali;Weisman, R. Bruce;Nagarajaiah, Satish
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.3
    • /
    • pp.259-270
    • /
    • 2022
  • This study explores the use of the recently developed "strain-sensing smart skin" (S4) method for noncontact strain measurements on cement-based samples. S4 sensors are single-wall carbon nanotubes dilutely embedded in thin polymer films. Strains transmitted to the nanotubes cause systematic shifts in their near-infrared fluorescence spectra, which are analyzed to deduce local strain values. It is found that with cement-based materials, this method is hampered by spectral interference from structured near-infrared cement luminescence. However, application of an opaque blocking layer between the specimen surface and the nanotube sensing film enables interference-free strain measurements. Tests were performed on cement, mortar, and concrete specimens with such modified S4 coatings. When specimens were subjected to uniaxial compressive stress, the spectral peak separations varied linearly and predictably with induced strain. These results demonstrate that S4 is a promising emerging technology for measuring strains down to ca. 30 𝜇𝜀 in concrete structures.

Realization of Readout Circuit Through Integrator to Average MCT Photodetector Signals of Noncontact Chemical Agent Detector (비접촉 화학작용제 검출기의 MCT 광검출기를 위한 적분기 기반의 리드아웃 회로 구현)

  • Park, Jae-Hyoun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.115-119
    • /
    • 2022
  • A readout circuit for a mercury-cadmium-telluride (MCT)-amplified mid-wave infrared (IR) photodetector was realized and applied to noncontact chemical agent detectors based on a quantum cascade laser (QCL). The QCL emitted 250 times for each wavelength in 0.2-㎛ steps from 8 to 12 ㎛ with a frequency of 100 kHz and duty ratio of 10%. Because of the nonconstant QCL emission power during on-duty, averaging the photodetector signals is essential. Averaging can be performed in digital back-end processing through a high-speed analog-to-digital converter (ADC) or in analog front-end processing through an integrator circuit. In addition, it should be considered that the 250 IR data points should be completely transferred to a PC during each wavelength tuning period of the QCL. To average and minimize the IR data, we designed a readout circuit using the analog front-end processing method. The proposed readout circuit consisted of a switched-capacitor integrator, voltage level shifter, relatively low-speed analog-to-digital converter, and micro-control unit. We confirmed that the MCT photodetector signal according to the QCL source can be accurately read and transferred to the PC without omissions.

Analysis of Eddy Current Loss on Permanent Magnets of Interior Permanent Magnet Synchronous Motor for Railway Transit (철도차량용 매입형 영구자석 동기전동기의 영구자석 와전류 손실 분석 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.370-375
    • /
    • 2012
  • In order to apply Interior Permanet Magnet Synchronous Motor(IPMSM) to the propulsion system of the railway transit, 110kW class IPMSMs with high-power density are designed as a concentrated winding model and a distributed winding model in this study. The concentrated winding model designed in this study is 6 poles/9 slots and the distributed winding model is 6 poles/36 slots. In general, the eddy current losses in the permanent magnets of IPMSM are caused by the slot harmonics. The thermal demagnetization of the magnet by the eddy current losses at high rotational speed often becomes one of the major problems in the IPMSM with a concentrated windings especially. A design to reduce eddy current losses in permanent magnet design is important in IPMSM for the railway vehicle propulsion system which requires high-speed operation. Therefore, a method to devide the permanent magnet is proposed to reduce the eddy current losses in permanent magnet in this study. Authors analyze the variation characteristics of the eddy current losses generated in permanent magnet of the concentrated winding model by changing the number of the division of the permanent magnets.

Study of Noncontact Condition Diagnosis on Painting with Terahertz Waves (테라헤르츠파를 이용한 회화문화재 상태진단 적용연구)

  • Baek, Na Yeon;Kang, Dai Ill;Ha, Tae Woo;Sim, Kyung Ik;Lee, Ho Won;Kim, Jae Hoon;Lee, Han Hyoung
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.235-247
    • /
    • 2016
  • Conventional imaging techniques such as ultraviolet, infrared, and X-ray are used mainly to diagnose the damaged parts of the painted cultural assets in Korea. These techniques, however, have limits in diagnosing damages of interlayer parts. We have performed and extensive study on the applicability of Terahertz(THz) analysis technique, introduced recently to this field of study on cultural properties in Korea, to diagnose painted cultural assets. The specimens, produced to imitate the damage types of Korean painted properties, were analyzed over their painting, supporting, and backing layers by terahertz pulse imaging technique. The analyzed results provided information about the cracks, the separated areas, and the separated distances between layers on the specimens. Our research, then, was extended to real painted cultural remains, Birojana Sam-shin Gwebul-do at Bongseon Temple in Namyang-ju, Korea National Treasure Number 1792, through which we have obtained 3D information about the extent and pattern of damages to the asset. These results demonstrate that terahertz 3D imaging technique has the capability of noncontact 3D diagnosis on painted cultural properties.

The Study about Measuring Method in Radius of Eyeglasses Lens Curvature by using Keratometer (각막곡률계를 이용한 안경렌즈 곡률반경 측정방법에 관한 연구)

  • Cha, Jung Won
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.127-133
    • /
    • 2012
  • Perpose: The aim of this study is to investigate the measuring method in radius of eyeglasses lens curvature by using keratometer in noncontact method. Methods: A trial lens for vision test in diopter range from -9.00 D to -11.50 D were attached in front part of keratometer, after that we set eyeglasses lens at the place where eyeglasses lens is apart about 25 cm from front position of keratometer. We measured the radius of curvature from observation of clear mire image while the position of eyeglasses lens is changed in a small quantity. After that, we made some formulas for compensation of radius of curvature by using spherometer. Results: The radius of curvature was successfully measured by keratometer with trial lens in front part of it. The measured radius of curvature was changed to compensation value using spherometer data, and the 5 kind of linear equation to make compensation value was made. Any kind of lenses measured by using keratometer that trial lens was attached in front part of it, after that it was confirmed that the result of calculation from line equation is exact in error ratio below 3.5%. Conclusions: It was confirmed that radius of eyeglasses lens curvature can be measured by using keratometer by noncontact method, and the accuracy is higher than "lens measure".