• Title/Summary/Keyword: Nonaqueous phase liquid

Search Result 15, Processing Time 0.027 seconds

Partitioning Tracer Analysis with Temporal Moments Equations (시간 모멘트식을 이용한 상분할추적자의 해석)

  • Cho, Jong-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.3-9
    • /
    • 2011
  • Partitioning tracers have been used with non-partitioning, inert tracer such Br, for detection, estimation, and monitoring of remediation performance of the subsurface contaminated with nonaqueous phase liquids (NAPLs). Various partitioning tracers with different partition coefficients between aqueous and nonaqueous phase liquids can be used to determine the hydraulic conductivity, dispersivity, and residual mass of NAPLs in the subsurface soil matrices. Temporal moment-generating equations were used to analyze the field pilot-scale test results. The pilot-scale tests included conservative tracer tests and partitioning tracer tests. Analyses of nonaqueous phase liquid distribution and characteristics of groundwater bearing soil media were performed.

Removal of Benzene-Nonaqueous Phase liquid(NAPL) in Soil Tank by NAPL Swelling and Non-swelling alcohols (토양 탱크에서 흡수 알코올과 비흡수 알코올을 이용한 벤젠-비수용상액체 제거 연구)

  • Song, Chung-Hyun;Jeong, Seung-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.40-47
    • /
    • 2009
  • Coinjection of alcohol and air or alcohol flooding only were evaluated with 3-D soil tank for removal of nonaqueous phase liquid (NAPL) contaminant from soil. 70%-ethanol and 40%-isopropanol were used for non-NAPL-swelling alcohol and NAPL-swelling alcohol, respectively. 729 ml-benzene was placed in the 37 liter soil tank. Alcohols were respectively injected from the injection well placed near the bottom of the tank and mobilized free phase NAPL and aqueous phases were then recovered from the extraction well placed in the upper part of the soil tank. Approximately 50% of removed NAPLs were free-phase in all experiments. The results were completely different to the previous soil column experiment results and also implied that alcohol properties did not affect the NAPL removal efficiency in the 3-D soil tank experiment. Air was also co-injected with alcohol to evaluate co-injection effects on NAPL removal. Enhanced NAPL removal effect of co-injection of 70%-ethanol and air was also found even in the 3-D soil tank evaluation. However, co-injection effect of 40%-iso-propanol and air was less apparent. This study determined that the most important parameter governing alcohol flooding for NAPL removal would be extraction capacity to recover NAPL and aqueous phase flowing in the soil. More researches are required for improving recovery efficiency of extraction well in real soil contamination conditions.

DNAPL Removal Mechanisms and Mass Transfer Characteristics during Cosolvent-Air Flooding

  • Jeong, Seung-Woo;A. Lynn Wood;Lee, Tony R.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.163-166
    • /
    • 2002
  • The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass transfer rate coefficients during CA flooding. DNAPL removal mechanisms were examined by evaluating the effects of air flow rate and DNAPL solubility and visually documented at a pore-scale. Two serial processes, immiscible displacement and dissolution, were experimentally and visually documented during CA flooding. Mass transfer rate coefficients (K) were computed from the data showing PCE saturation versus time. Results showed that CA floods exhibited higher K values than cosolvent floods without concurrent air injection. (This document has not been subjected to Agency review and therefore does not necessarily reflect the views of the Agency, and no official endorsement should be inferred.)

  • PDF

Partitioning Interwell Tracer Test for NAPL Source Characterization: A General Overview

  • Lee, Tony R.;A. Lynn Wood;Jeong, Seung-Woo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.159-162
    • /
    • 2002
  • Innovative and nondestructive characterization techniques have been developed to locate and quantify nonaqueous phase liquids (NAPLs) in the vadose and saturated zones in the subsurface environment. One such technique is the partitioning interwell tracer test (PITT). The PITT is a simultaneous displacement of partitioning and non-partitioning tracers through a subsurface formation. Partitioning tracers will partition into the NAPL during their transport through NAPL-contaminated formations. Mean travel times of partitioning and non-partitioning tracers are used to estimate the quantity of NAPL encountered by the displaced tracer pulse. Travel times are directly proportional to the partitioning coefficient and the volume of NAPL contacted in the subsurface environment. This paper discusses the conceptual background, design and implementation of PITTs. (This document has not been subjected to Agency review and therefore does not necessarily reflect the views of the Agency, and no official endorsement should be inferred.)

  • PDF

Relationships between Biodegradation and Sorption of Phenanthrene in Slurry Bioremediation

  • ;;Bruce E. Rittmann
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.171-176
    • /
    • 2000
  • Bioremediation of hazardous hydrophobic organic compounds, such as polycyclic aromatic hydrocarbons (PAHs), is a major environmental concern due to their toxic and carcinogenic properties. Due to their hydrophobicity, the hydrophobic organic compounds are mainly associated with the soil organic matter or nonaqueous-phase liquids. A major question concerns the relationships between biodegradation and sorption. This work develops and utilizes a non- steady state model for evaluating the interactions between sorption and biodegradation of phenanthrene, a 3-ring PAH compound, in soil-slurry systems. The model includes sorption/desorption of a target compound, its utilization by microorganisms as a primary substrate existing in the dissolved phase and/or the sorbed phase in biomass and soil, oxygen transfer, and oxygen utilization as an electron acceptor. Biodegradation tests with phenanthrene were conducted in liquid and soil-slurry systems. The soil-slurry tests were performed with very different mass transfer rate: fast mass transfer in a flask test at 150 rpm, and slow mass transfer in a roller-bottle test at 2 rpm. In the slurry tests, phenanthrene was degraded more rapidly than in liquid tests, but with a similar rate in both slurry systems. Modeling analyses with several hypotheses indicate that a model without biodegradation of compound sorbed to the soil was not able to account for the rapid degradation of phenanthrene, particularly in the roller bottle slurry test. Reduced mass-transfer resistance to bacteria attached to the soil is the most likely phenomenon accounting for rapid sorbed-phase biodegradation.

  • PDF

Visualization and Quantification of Dissolution of Dense Nonaqueous Phase Liquid Entrapped in Porous Media (다공성 매체내 유기용매(DNAPL)의 용해현상 시각화 및 정량화 연구)

  • Ju, Byung-Kyu;Jeong, Seung-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.46-52
    • /
    • 2008
  • Oils and chlorinated solvents leaking to the subsurface are entrapped in the soil pore and these are called as nonaqueous phase liquids (NAPL). NAPL entrapped in porous media acts as a continuous source for surface and ground water contamination. This study visualized dissolution of trichloroethylene (TCE) entrapped in porous media and quantified the velocity of TCE dissolution using an image analysis technique. As the water velocity increased, the level of dissolution increased. The results imply that a TCE contaminated region having a high infiltration rate and groundwater velocity may result in severe groundwater contamination. Microscopic images of TCE entrapped in porous media showed that TCE present in the preferential flow paths was easily dissoluted into the water phase. However, TCE present in the stagnant flow region was visualized for long time. The results imply that TCE would be still present in the soil if TCE is detected in goundwater.

  • PDF

Silicone oil에 기초한 microemulsion을 이용한 DNAPL의 제거

  • 권태순;백기태;이재영;양중석;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.479-482
    • /
    • 2003
  • In this study, the solubilization of dense nonaqueous phase liquid (DNAPL) using oil-based emulsion was investigated for aquifer remediation. The micro-sized oil emulsion has large surface areas and buoyancy force, therefore it can be effective in treating DNAPL pool of the aquifer without downward migration of DNAPLs. The emulsion was prepared using silicone oil and mechanical homogenization. And the prepared emulsion had micro-sized similar distribution: 99 % in number and 80 % in volume were less than 10${\mu}{\textrm}{m}$. As target pollutants, trichloroethylene and 1, 2 dichlorobenzene were selected. All of used DNAPLs were solubilized successfully in oil-based emulsion. Even at low oil percentage, emulsion showed good solubility against pollutants. Therefore, the remediation using oil-based emulsion was considered as an effective alternative in dealing with DNAPLs of the aquifer.

  • PDF

Effect of pH and Iron/Manganese Ion on TiO2 Mediated Photocatalytic Inactivation of Index Microorganisms (LNAPL을 이용한 지중 산소전달 향상: (I) Abiotic Condition)

  • Ha, Jeong-Hyub;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.307-311
    • /
    • 2004
  • The objective of this work is to evaluate the hypothesis that a good technique for supplying oxygen to the saturated zone in the presence of light nonaqueous phase liquid (LNAPL) pool contamination at the water table is to pass air through the unsaturated zone above the pool. This hypothesis was evaluated in experimental studies performed using a bench-scale, sand-tank reactor, Steady-state abiotic experiments in the sand-tank reactor with air flowing through the reactor headspace demonstrated that oxygen supply through the water table interface into the saturated zone was enhanced when an LNAPL (dodecane) pool was present at the water table. These experimental results confirmed the hypothesis that an LNAPL pool can serve as a high concentration oxygen source to the oxygen-limited area beneath the pool and, as a result, enhance the in situ biodegradation rate.

Removal of Benzene-NAPL in Soil Column by Cosolvent Flooding (Cosolvent에 의한 토양 내 Benzene-NAPL 세정 연구)

  • Song, Chung-Hyun;Jeong, Seung-Woo;Lee, Byung-Jin;Go, Sung-Hwan
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.45-51
    • /
    • 2008
  • Removal of nonaqueous phase liquid present in the soil column by using cosolvent floods was investigated. The first objective of the study was to elucidate the removal mechanism of cosolvent flooding for benzene-NAPL. The second objective of the study was to evaluate the effects of the alchohol partitioning type (NAPL swelling and non-swelling) and concentration on NAPL removal efficiency from the soil column. The main NAPL removal mechanism of swelling alcohol was mobilization, while that of non-swelling alcohol was NAPL dissolution. The NAPL removal efficiency of swelling alcohol was more effective than that of non-swelling alcohol. Removal of Benzene NAPL entrapped in the soil would be effective under the cosolvent flood condition of alcohol content greater than 40% in volume.