• Title/Summary/Keyword: Non-uniform Rational B-spline

Search Result 67, Processing Time 0.024 seconds

Aerodynamic Optimization Design for All Condition of Centrifugal Compressor

  • Lin, Zhirong;Gao, Xue-Lin;Yuan, Xin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.213-217
    • /
    • 2008
  • This paper describes an application of centrifugal compressor optimization system, in which the blade profile of impeller is represented with NURBS(Non-Uniform Rational B-Spline) curve. A commercial CFD(Computational Fluid Dynamics) program named NUMECA fine/turbo was used to evaluate the performance of the whole centrifugal compressor flow passage including impeller and diffuser. The whole optimization design system was integrated based on iSIGHT, a commercial integration and optimization software, which provides a direct application of some optimization algorithms. To insure the practicability of optimization, the performance of centrifugal compressor under all condition was concerned during the optimizing process. That means a compositive object function considering the aerodynamic efficiency, pressure ratio and mass flow rate under different work condition was applied by using different weight number for different conditions. Using the optimization method described in this paper, an optimized design of the impeller blade of centrifugal compressor was obtained. Comparing to the original design, optimized design has a better performance not only under the design work condition, but also the off-design work condition including near stall and near choke condition.

  • PDF

Implications Deduction through Analysis of Reverse Engineering Process and Case Study for Prefabrication and Construction of Freeform Envelop Panels (비정형 건축물의 외장 패널의 선제작과 시공을 위한 역설계 프로세스와 사례 분석을 통한 시사점 도출)

  • Ryu, Han-Guk;Kim, Sung-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.579-585
    • /
    • 2016
  • 3D laser scanning can be used for scanning the freeform surface and building a model from which the measurements could be taken, in order to solve the difficulty with getting access to the exact freeform shape and position data of the complex building envelope. The shape making process using 3D scanning is as follows: point cloud, mesh surface segmentation, NURBS(Non-Uniform Rational B-spline) surface generation, and parametric solid model generation. In this research, we review previous studies, reverse engineering notion, importance of reverse engineering usage for freeform envelope, and previous cases in order to identify the detail reverse engineering process for prefabrication and construction of freeform panels using 3D laser scanning technology. Therefore, the purpose of this research is to present a basic information which should be considered during design and construction phase and improve quality and constructibility of freeform building by analyzing the reverse engineering process and case study for prefabrication and construction of freeform panels using 3D laser scanning. The research results will enable 3D shape engineering and design parameterization using reverse engineering to be used in various construction projects.

A complete S-shape feed rate scheduling approach for NURBS interpolator

  • Du, Xu;Huang, Jie;Zhu, Li-Min
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.206-217
    • /
    • 2015
  • This paper presents a complete S-shape feed rate scheduling approach (CSFA) with confined jerk, acceleration and command feed rate for parametric tool path. For a Non-Uniform Rational B-Spline (NURBS) tool path, the critical points of the tool path where the radius of curvature reaches extreme values are found firstly. Then, the NURBS curve is split into several NURBS sub-curves or blocks by the critical points. A bidirectional scanning strategy with the limitations of chord error, normal/tangential acceleration/jerk and command feed rate is employed to make the feed rate at the junctions between different NURBS blocks continuous. To improve the efficiency of the feed rate scheduling, the NURBS block is classified into three types: short block, medium block and long block. The feed rate profile corresponding to each NURBS block is generated according to the start/end feed rates and the arc length of the block and the limitations of tangential acceleration/jerk. In addition, two compensation strategies are proposed to make the feed rate more continuous and the arc increment more precise. Once the feed rate profile is determined, a second-order Taylor's expansion interpolation method is applied to generate the position commands. Finally, experiments with two free-form NURBS curves are conducted to verify the applicability and accuracy of the proposed method.

A Study on the Problem Analysis and Quality Improvement in Fabricating Free-Form Buildings Facade Panels through Mock-up Panels Production (Mock-up 부재제작을 통한 비정형 건축 외장부재의 제작 문제점 분석 및 개선방안에 관한 연구)

  • Kwen, Soon-Ho;Shim, Hyoun-Woo;Ock, Jong-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.3
    • /
    • pp.11-21
    • /
    • 2011
  • The most critical issue in free-form buildings is how to construct the free-formed exterior facade panels. Their geometric complexity delivers many cons and problems in fabricating and constructing their shapes. To construct a free-form building, first of all, its skin has to be chopped into small pieces, which is called panelization. After panelization, the panels go through an optimization process to construct them economically. The panel's geometries are modified or regenerated through this optimization process. In this study, the panel optimization process of free-form buildings are performed through a case study. The panel shapes of the case study are modeled with Digital Project. To test the constructability of the various panels, 8 mock-up panels are made and laser scanning technology is applied to measure the preciseness of the panels manufactured in comparison with their original design.

Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory

  • Tahouneh, Vahid;Naei, Mohammad Hasan;Mashhadi, Mahmoud Mosavi
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.717-727
    • /
    • 2019
  • This paper is motivated by the lack of studies in the technical literature concerning to vibration analysis of a single-layered graphene sheet (SLGS) with corner cutout based on the nonlocal elasticity model framework of classical Kirchhoff thin plate. An isogeometric analysis (IGA) based upon non-uniform rational B-spline (NURBS) is employed for approximation of the L-shape SLGS deflection field. Trimming technique is employed to create the cutout in geometry of L-shape plate. The L-shape plate is assumed to be Free (F) in the straight edges of cutout while any arbitrary boundary conditions are applied to the other four straight edges including Simply supported (S), Clamped (C) and Free (F). The Numerical studies are carried out to express the influences of the nonlocal parameter, cutout dimensions, boundary conditions and mode numbers on the variations of the natural frequencies of SLGS. It is precisely shown that these parameters have considerable effects on the free vibration behavior of the system. In addition, numerical results are validated and compared with those achieved using other analysis, where an excellent agreement is found. The effectiveness and the accuracy of the present IGA approach have been demonstrated and it is shown that the IGA is efficient, robust and accurate in terms of nanoplate problems. This study serves as a benchmark for assessing the validity of numerical methods used to analyze the single-layered graphene sheet with corner cutout.

Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches

  • Tahouneh, Vahid;Naei, Mohammad Hasan;Mashhadi, Mahmoud Mosavi
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.261-277
    • /
    • 2020
  • The main objective of this research paper is to consider vibration analysis of vacancy defected graphene sheet as a nonisotropic structure via molecular dynamic and continuum approaches. The influence of structural defects on the vibration of graphene sheets is considered by applying the mechanical properties of defected graphene sheets. Molecular dynamic simulations have been performed to estimate the mechanical properties of graphene as a nonisotropic structure with single- and double- vacancy defects using open source well-known software i.e., large-scale atomic/molecular massively parallel simulator (LAMMPS). The interactions between the carbon atoms are modelled using Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential. An isogeometric analysis (IGA) based upon non-uniform rational B-spline (NURBS) is employed for approximation of single-layered graphene sheets deflection field and the governing equations are derived using nonlocal elasticity theory. The dependence of small-scale effects, chirality and different defect types on vibrational characteristic of graphene sheets is investigated in this comprehensive research work. In addition, numerical results are validated and compared with those achieved using other analysis, where an excellent agreement is found. The interesting results indicate that increasing the number of missing atoms can lead to decrease the natural frequencies of graphene sheets. It is seen that the degree of the detrimental effects differ with defect type. The Young's and shear modulus of the graphene with SV defects are much smaller than graphene with DV defects. It is also observed that Single Vacancy (SV) clusters cause more reduction in the natural frequencies of SLGS than Double Vacancy (DV) clusters. The effectiveness and the accuracy of the present IGA approach have been demonstrated and it is shown that the IGA is efficient, robust and accurate in terms of nanoplate problems.

Isogeometric Analysis of Electrostatic Adhesive Forces in Two-Dimensional Curved Electrodes (2차원 곡면형 전극에서 정전기 흡착력의 아이소-지오메트릭 해석)

  • Oh, Myung-Hoon;Kim, Jae-Hyun;Kim, Hyun-Seok;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.199-204
    • /
    • 2021
  • In this study, an isogoemetric analysis (IGA) method that uses NURBS (Non-Uniform Rational B-Spline) basis functions in computer-aided design (CAD) systems is employed to account for the geometric exactness of curved electrodes constituting an electro-adhesive pad in electrostatic problems. The IGA is advantageous for obtaining precise normal vectors when computing the electro-adhesive forces on curved surfaces. By performing parametric studies using numerical examples, we demonstrate the superior performance of the curved electrodes, which is attributed to the increase in the normal component of the electro-adhesive forces. In addition, concave curved electrodes exhibit better performance than their convex counterparts.