• Title/Summary/Keyword: Non-uniform Exposure

Search Result 25, Processing Time 0.026 seconds

Simple and Cost-Effective Method for Edge Bead Removal by Using a Taping Method

  • Park, Hyeoung Woo;Kim, H.J.;Roh, Ji Hyoung;Choi, Jong-Kyun;Cha, Kyoung-Rae
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1473-1478
    • /
    • 2018
  • In this study, we have developed a simple and cost-effective method to prevent edge bead formation by covering the edge of a chip-level substrate with heat-resistant tape during patterning using SU-8. Edge beads are a fundamental problem in photoresists and are particularly notable in high-viscosity fluids and thick coatings. Edge beads can give rise to an air gap between the substrate and the patterning mask during UV exposure, which results in non-uniform patterns. Furthermore, the sample may break since the edge bead is in contact with the mask. In particular, the SU-8 coating thickness of the chip-level substrates used in MEMS or BioMEMS may not be properly controlled because of the presence of edge beads. The proposed method to solve the edge bead problem can be easily and economically utilized without the need for a special device or chemicals. This method is simple and prevents edge bead formation on the sample substrate. Despite the small loss in the taping area, the uniformity of the SU-8 coating is improved from 50.9% to 5.6%.

Polymerization Shrinkage Distribution of a Dental Composite during Dental Restoration Observed by Digital Image Correlation Method (디지털 이미지 상관법을 이용한 치과용 복합레진의 수복 시 중합수축분포 관찰)

  • Park, Jung-Hoon;Choi, Nak-Sam
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.393-398
    • /
    • 2017
  • The shrinkage distribution of a dental composite (Clearfil AP-X, Kuraray, Japan) used for dental restoration was observed using a digital image correlation method. In order to analyze the shrinkage distribution formed during and after light irradiation, digital images were taken with different photographing conditions for each period. Optimal photographing conditions during LED irradiation were obtained through a preliminary experiment in which the exposure time was applied from 0.15 ms to 0.55 ms in 0.05 ms intervals. The DIC analysis results showed that the strain was non-uniform. For the initial 20 s of light irradiation the composite resin shrank to the level of 50~60% of the final curing shrinkage. Such large shrinkage amount of the composite resin lump affected the tensile stress concentration near the adhesive region between the composite resin and the substrate.

Preparation and Characterization of Small Intestine Submucosa Powder Impregnated Poly(L-lactide) Scaffolds: The Application for Tissue Engineered Bone and Cartilage

  • Khang, Gilson;Rhee, John M.;Shin, Philkyung;Kim, In Young;Lee, Bong;Lee, Sang Jin;Lee, Young Moo;Lee, Hai Bang;Lee, Ilwoo
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.158-167
    • /
    • 2002
  • In order to endow with new bioactive functionality from small intestine submucosa (SIS) powder as natural source to poly (L-lactide) (PLA) and poly (lactide-co-glycolide) (PLGA) synthetic biodegradable polymer, porous SIS/PLA and SIS/PLGA as natural/synthetic composite scaffolds were prepared by means of the solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. A uniform distribution of good interconnected pores from the surface to core region was observed the pore size of 40~500 ${\mu}{\textrm}{m}$ independent with SIS amount using the solvent casting/salt leaching method. Porosities, specific pore areas as well as pore size distribution also were almost same. After the fabrication of SIS/PLA hybrid scaffolds, the wetting properties was greatly enhanced resulting in more uniform cell seeding and distribution. Five groups as PGA non-woven mesh without glutaraldehyde (GA) treatment, PLA scaffold without or with GA treatment, and SIS/PLA (Code No.3 ; 1 : 12 of salt content, (0.4 : 1 of SIS content, and 144 ${\mu}{\textrm}{m}$ of median pore size) without or with GA treatment were implanted into the back of nude mouse to observe the effect of SIS on the induction of cells proliferation by hematoxylin and eosin, and von Kossa staining for 8 weeks. It was observed that the effect of SIS/PLA scaffolds with GA treatment on bone induction are stronger than PLA scaffolds, that is to say, in the order of PLA/SIS scaffolds with GA treatment > PLA/SIS scaffolds without GA treatment > PGA nonwoven > PLA scaffolds only with GA treatment = PLA scaffolds only without GA treatment for the osteoinduction activity. The possible explanations are (1) many kinds of secreted, circulating, and extracellular matrix-bound growth factors from SIS to significantly affect critical processes of tissue development and differentiation, (2) the exposure of SIS to GA resulted in significantly calcification, and (3) peri-implant fibrosis due to covalent bonding between collagen molecule by crosslinking reaction. In conclusion, it seems that SIS plays an important role for bone induction in SIS/PLA scaffolds for the application of tissue engineering area.

Evaluation of Viral Inactivation Efficacy of a Continuous Flow Ultraviolet-C Reactor (UVivatec) (연속 유동 Ultraviolet-C 반응기(UVivatec)의 바이러스 불활화 효과 평가)

  • Bae, Jung-Eun;Jeong, Eun-Kyo;Lee, Jae-Il;Lee, Jeong-Im;Kim, In-Seop;Kim, Jong-Su
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.377-382
    • /
    • 2009
  • Viral safety is an important prerequisite for clinical preparations of all biopharmaceuticals derived from plasma, cell lines, or tissues of human or animal origin. To ensure the safety, implementation of multiple viral clearance (inactivation and/or removal) steps has been highly recommended for manufacturing of biopharmaceuticals. Of the possible viral clearance strategies, Ultraviolet-C (UVC) irradiation has been known as an effective viral inactivating method. However it has been dismissed by biopharmaceutical industry as a result of the potential for protein damage and the difficulty in delivering uniform doses. Recently a continuous flow UVC reactor (UVivatec) was developed to provide highly efficient mixing and maximize virus exposure to the UV light. In order to investigate the effectiveness of UVivatec to inactivate viruses without causing significant protein damage, the feasibility of the UVC irradiation process was studied with a commercial therapeutic protein. Recovery yield in the optimized condition of $3,000\;J/m^2$ irradiation was more than 98%. The efficacy and robustness of the UVC reactor was evaluated with regard to the inactivation of human immunodeficiency virus (HIV), hepatitis A virus (HAV), bovine herpes virus (BHV), bovine viral diarrhea virus (BVDV), porcine parvovirus (PPV), bovine parvovirus (BPV), minute virus of mice (MVM), reovirus type 3 (REO), and bovine parainfluenza virus type 3 (BPIV). Non enveloped viruses (HAV, PPV, BPV, MVM, and REO) were completely inactivated to undetectable levels by $3,000\;J/m^2$ irradiation. Enveloped viruses such as HIV, BVDV, and BPIV were completely inactivated to undetectable levels. However BHV was incompletely inactivated with slight residual infectivity remaining even after $3,000\;J/m^2$ irradiation. The log reduction factors achieved by UVC irradiation were ${\geq}3.89$ for HIV, ${\geq}5.27$ for HAV, 5.29 for BHV, ${\geq}5.96$ for BVDV, ${\geq}4.37$ for PPV, ${\geq}3.55$ for BPV, ${\geq}3.51$ for MVM, ${\geq}4.20$ for REO, and ${\geq}4.15$ for BPIV. These results indicate that UVC irradiation using UVivatec was very effective and robust in inactivating all the viruses tested.

Application of Chlorophyll Fluorescence Parameters for the Detection of Water Stress Ranges in Grafted Watermelon Seedlings (수박접목묘의 건조스트레스 범위 탐지를 위한 엽록소형광 지수의 적용)

  • Shin, Yu Kyeong;Kim, Yong Hyeon;Lee, Jun Gu
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.461-470
    • /
    • 2019
  • This study was carried out to quantify the drought stress in grafted watermelon seedlings non-destructively by using chlorophyll fluorescence (CF) imaging technique rather than the visual judgment. Six-day old watermelon seedlings were grown under uniform irrigation for 3 days, and then given drought stress. Afterward, the sensor for the measurement of water content in plug tray cell unit was used to classify the drought-stress level into nine groups from D1 (53.0%, sufficient moisture state) to D9 (15.7%, extremely dry stress), and the 16 CF parameters were measured. In addition, re-irrigation was performed on the drought stressed seedlings(D5 - D9) to determine the growth and photosynthesis recovery level, which was not confirmed by visual judgment. The kinetic curve patterns of CF in three different drought stressed seedling groups were found to be different for the early detection of drought stress. All the 16 CF parameters decreased continuously with exposure to drought stress and drastically decreased from D5 (32.1%) where the visual judgment was possible. The fluorescence decline ratio (Rfd_Lss) started to decrease from the initial drought stress level (D5 - D6), and the Maximum PSII quantum yield (Fv/Fm) was significantly decreased in the later extreme drought stress range (D7 - D9) by re-irrigation recovery test. Thus, Rfd_Lss and Fv/Fm parameters were finally selected as potent indicators of growth and photosynthesis recovery in the initial and later stages of drought stress. Also, to the differences in the numerical values of the individual chlorophyll fluorescence parameters, the drought stress level was intuitively confirmed through the image. These results indicate that Rfd and Fv/Fm can be considered as potential CF parameters for the detection of low and extremely high drought stress, respectively. Furthermore, Fv/Fm can be considered as the best CF parameters for recovery at re-irrigation.