Browse > Article
http://dx.doi.org/10.3938/jkps.73.1473

Simple and Cost-Effective Method for Edge Bead Removal by Using a Taping Method  

Park, Hyeoung Woo (Department of Physics, Kyungpook National University)
Kim, H.J. (Department of Physics, Kyungpook National University)
Roh, Ji Hyoung (Department of Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF))
Choi, Jong-Kyun (Department of Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF))
Cha, Kyoung-Rae (Department of Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF))
Abstract
In this study, we have developed a simple and cost-effective method to prevent edge bead formation by covering the edge of a chip-level substrate with heat-resistant tape during patterning using SU-8. Edge beads are a fundamental problem in photoresists and are particularly notable in high-viscosity fluids and thick coatings. Edge beads can give rise to an air gap between the substrate and the patterning mask during UV exposure, which results in non-uniform patterns. Furthermore, the sample may break since the edge bead is in contact with the mask. In particular, the SU-8 coating thickness of the chip-level substrates used in MEMS or BioMEMS may not be properly controlled because of the presence of edge beads. The proposed method to solve the edge bead problem can be easily and economically utilized without the need for a special device or chemicals. This method is simple and prevents edge bead formation on the sample substrate. Despite the small loss in the taping area, the uniformity of the SU-8 coating is improved from 50.9% to 5.6%.
Keywords
Spin coating; Edge bead; MEMS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Li, X. Liu and A. J. Mason, in 2012 IEEE International Symposium (2012), p. 2401.
2 J. Zhang, M. B. Chan-Park, J. Miao and T. T. Sun, Microsys. Techn. 11, 519 (2005).   DOI
3 Y-J. Chuang, F-G. Tseng and W-K. Lin, Microsys. Techn. 8, 308 (2002).   DOI
4 S-W. Youn, A. Ueno, M. Takahashi and R. Maeda, Microelectron. Eng. 85, 1924 (2008).   DOI
5 W-J. Kang, E. Rabe, S. Kopetz and A. Neyer, J. Micromech. Microeng. 16, 821 (2006).   DOI
6 L. Convert, F. G. Baril, V. Boisselle, J-F. Pratte, R. Fontaine, R. Lecomte, P. G. Charette and V. Aimez, Lab on a Chip 12, 4683 (2012).   DOI
7 A. Ping, A. Schmitz, I. Adesida, M. A. Khan, Q. Chen and J. Yang, J. Electron. Mater. 26, 266 (1997).   DOI
8 M. Shaw, D. Nawrocki, R. Hurditch and D. Johnson, Microsys. Technol. 10, 1 (2003).   DOI
9 B. Eyre, J. Blosiu and D. Wiberg, in Proceedings, The Eleventh Annual International Workshop on IEEE (1998), p. 218.
10 A. Bogdanov and S. Peredkov, Microelectron. Eng. 53, 493 (2000).   DOI
11 H. Lee, K. Lee, B. Ahn, J. Xu, L. Xu and K. W. Oh, J. Micromech. Microeng. 21, 125006 (2011).   DOI
12 N. J. Shirtcliffe, S. Aqil, C. Evans, G. McHale, M. I. Newton, C. C. Perry and P. Roach, J. Micromech. Microeng. 14, 1384 (2004).   DOI
13 S. M. Langelier, E. Livak-Dahl, A. J. Manzo, B. N. Johnson, N. G. Walter and M. A. Burns, Lab on a Chip 11, 1679 (2011).   DOI
14 H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud and P. Vettiger, J. Micromech. Microeng. 7, 121 (1997).   DOI
15 R. S. Shawgo, A. C. R. Grayson, Y. Li and M. J. Cima, Curr. Opin. Solid-State Mater. Sci. 6, 329 (2002).   DOI
16 A. Mata, A. J. Fleischman and S. Roy, J. Micromech. Microeng. 16, 276 (2006).   DOI
17 P. Abgrall, V. Conedera, H. Camon, A. M. Gue and N. T. Nguyen, Electrophor. 28, 4539 (2007).   DOI
18 H. Sato, H. Matsumura, S. Keino and S. Shoji, J. Micromech. Microeng. 16, 2318 (2006).   DOI
19 D. V. McAllister, P. M. Wang, S. P. Davis, J-H. Park, P. J. Canatella, M. G. Allen and M. R. Prausnitz, Proc. Natl. Acad. Sci. 100, 13755 (2003).   DOI
20 K-J. Kim, Y-S. Kim, J-J. Bae, B-H. Kang, S-H. Yeom, H. Yuan and S-W. Kang, Sol. Ener. Mat. Sol. Cells 95, 1238 (2011).   DOI
21 H. Chiamori, J. Brown, E. Adhiprakasha, E. Hantsoo, J. Straalsund, N. Melosh and B. Pruitt, Microelectron. 39, 228 (2008).   DOI
22 C-P. Lin, C-H. Chang, Y. Cheng and C. F. Jou, IEEE Antenna, Wire, Propagation Lett. 10, 1108 (2011).   DOI
23 H. Pandya, H. T. Kim, R. Roy and J. P. Desai, Mater. Sci. Semicond. Process. 19, 163 (2014).   DOI
24 X. Niu, S. Peng, L. Liu, W. Wen and P. Sheng, Adv. Mater. 19, 2682 (2007).   DOI
25 E. Plis, S. Krishna, N. Gautam, S. Myers and S. Krishna, IEEE Photon. J. 3, 234 (2011).   DOI
26 H. S. Kim, S. Myers, B. Klein, A. Kazemi, S. Krishna, J. O. Kim and S. J. Lee, J. Korean Phys. Soc. 66, 535 (2015).   DOI
27 N. Atthi, O. Nimittrakoolchai, W. Jeamsaksiri, S. Supothina, C. Hruanun and A. Poyai, Songklanakarin J. Sci. Technol. 31, 331 (2009).
28 H. Miyajima and M. Mehregany, J. Microelectromech. Syst. 4, 220 (1995).   DOI