• 제목/요약/키워드: Non-thermal Plasma

검색결과 231건 처리시간 0.037초

대기압플라즈마 및 오존 분해촉매를 이용한 트리클로로에틸렌의 분해효율 증진 연구 (A Study for improving Decomposition Efficiency of Trichloroethylene using Atmospheric Plasma Reactor and Ozone Decomposing Catalyst)

  • 한상보;박재윤;박상현
    • 조명전기설비학회논문지
    • /
    • 제22권12호
    • /
    • pp.142-149
    • /
    • 2008
  • 본 논문은 비열평형 플라즈마와 촉매를 이용하여 트리클로로에틸렌의 효과적인 분해방법을 제안하였다. 이를 위하여 이산화망간과 알루미나 펠렛을 플라즈마 리액터 내부에 충진한 리액터를 설계하였다. 이산화망간 충진 리백터를 이용할 경우에는 산소를 포함한 가스중의 방전에 의해 발생된 오존이 촉매 표면에서 분해되는 동안에 발생된 산소원자 라디칼에 의하여 TCE의 분해율이 향상됨을 알 수 있었다. 그리고 알루미나를 충진한 경우에는 TCE DCAC로 산화되었으며, COx 및 $Cl_2$와 같은 저분자상으로 많이 분해되지 않았다. 그러나 알루미나 충진 리액터에 의한 플라즈마 처리된 가스를 리액터 후단에 설치한 이산화망간 촉매를 통과시킴에 의하여 분해율이 매우 향상됨을 알 수 있었다. 따라서, 플라즈마 프로세스에 이산화망간을 응용함에 의하여 오존 분해에 따른 촉매 표면의 산소원자 라디칼에 의하여 TCE 및 분해 생성물(DCAC)를 효율적으로 분해하는 것이 가능하다.

광촉매 반응치 설계를 위한 기초 연구 (A Fundamental Study for a Photocatalytic Reactor Design)

  • 손건석;윤승원;고성혁;김대중;송재원;이귀영
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.40-47
    • /
    • 2002
  • Because UV wavelength lights can activate photocatalysts, plasma is used as a light source of a photocatalytic reactor. Even though plasma has good intensity for photo reaction, substrate of catalyst coating was limited by the geometry of plasma generator. Usually bead type substrate was used for a pack bed type reactor. Honeycomb monolith type substrate was used with UV lamps instead plasma, due to the light penetration the honeycomb monolith length was too short to show good activity In this study a photocatalytic reactor, which is using a honeycomb monolith substrate, was investigated with plasma as an activation light source. As a parametric study the effects of 1311owing factors on plasma generation and power consumption are examined; supply voltage, substrate length, environment condition, catalyst loading and ratio. Using the test results, the practicability test was done with simulated synthetic gases representing bad smells and automotive exhaust gases.

Role of Non-Thermal DBD Plasma on Cell Migration and Cell Proliferation in Wound Healing

  • Ali, Anser;Lee, Seung Hyun;Kim, Yong Hee;Uhm, Han Sup;Choi, Eun Ha;Park, Bong Joo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.526-526
    • /
    • 2013
  • Plasma technology isbeing developed for a range of medical applications including wound healing. However, the effect of plasma on many cells and tissues is unclear. Cell migration and cell proliferation are very important biological processes which are affected by plasma exposure and might be a potential target for plasma therapy during wound healing treatment. In this study, we confirmed the plasma exposure time and incubation time after plasma treatment in skin fibroblast (L-929 cells) to evaluate the optimal conditions forplasma exposure to the cell in-vitro. In addition, we used a scratch method to generate artificial wound for evaluating the cell migration by plasma treatment. Where, the cells were treated with plasma and migration rate was observed by live-cell imaging device. To find the cell proliferation, cell viability assay was executed. The results of this study indicate the increased cell proliferation and migration on mild plasma treatment. The mechanisms for cell migration and cell proliferation after plasma treatment for future studies will be discussed.

  • PDF

Fibroblasts 세포주의 HSP70에 대한 DBD-bio-plasma의 effects: Cell에서 Heat Shock에 의한 Molecular Level 변화로의 새로운 접근법 (Effects of DBD-bio-plasma on the HSP70 of Fibroblasts: A New Approach on Change of Molecular Level by Heat Shock in the Cell)

  • 김경연;이준영;남민경;최은하;임향숙
    • KSBB Journal
    • /
    • 제30권1호
    • /
    • pp.21-26
    • /
    • 2015
  • Plasma is an ionized gas mixture, consisting of neutral particles, positive ions, negative electrons, electronically excited atoms and molecules, radicals, UV photons, and various reactive species. Also, plasma has unique physical properties distinct from gases, liquids, and solids. Until now, non-thermal plasmas have been widely utilized in bio-medical applications (called bio-plasma) and have been developed for the plasma-related devices that are used in the medical field. Although numerous bio-plasma studies have been performed in biomedicine, there is no confirmation of the nonthermal effect induced by bio-plasma. Standardization of the biological application of plasma has not been evaluated at the molecular level in living cells. In this context, we investigated the biological effect of bio-plasma on living cells. Hence, we treated the fibroblasts with Dielectric Bauvier Discharge bio-plasma (DBD), and assessed the characteristic change at the molecular level, one of the typical cellular responses. Heat shock protein 70 (HSP70) regulates its own protein level in response to stimuli. HSP70 responds to heat shock by increasing its own expression at the molecular level in cells. Hence, we confirmed the level of HSP70 after treatment of mouse embryonic fibroblasts (MEFs) with DBD. Interestingly, DBD-plasma induced cell death, but there was no difference in the level of HSP70, which is induced by heat shock stimuli, in DBD-treated MEFs. Our data provide the basic information on the interaction between MEFs and DBD, and can help to design a molecular approach in this field.

침형 상압 마이크로 플라즈마 장치에서 발생하는 전기장이 세포 사멸에 미치는 효과 (The effect of RF electric fields from an atmospheric micro-plasma needle device on the death of cells)

  • 윤현진;손채화;김규천;이해준
    • 전기학회논문지
    • /
    • 제57권12호
    • /
    • pp.2249-2254
    • /
    • 2008
  • A non-thermal micron size plasma needle is applicable for medical treatment because it includes radicals, charged particles, ultraviolet emission, and strong electric fields. The electric fields around the plasma needle device driven by a radio frequency wave are investigated in order to calculate the power delivered to the cell. A commercial multi-physics code, CFD-ACE, was utilized for the calculation of electric fields for the optimization of the needle structure. The electric field and energy absorption profiles are presented with the variation of the device structure and the distance between the needle and tissues. The living tissues effectively absorb the radio frequency power from the plasma needle device with the covered pyrex structure.

대기압 유전체장벽방전 플라즈마에 의한 식품유해 미생물 살균 (Sterilization of Food-Borne Pathogenic Bacteria by Atmospheric Pressure Dielectric Barrier Discharge Plasma)

  • 이승제;송윤석;박유리;유승민;전형원;엄상흠
    • 한국식품위생안전성학회지
    • /
    • 제32권3호
    • /
    • pp.222-227
    • /
    • 2017
  • 연구는 대기압 유전체장벽방전 플라즈마 처리에 따른 식품유해 미생물 사멸효과를 조사하기 위해 수행되었다. 플라즈마 처리 시, 활성종 생성 및 농도에 영향을 미치는 노출시간, 노출거리, 산소비율, 전력 변화에 따른 E. coli의 사멸효과를 조사한 결과, E. coli의 사멸율은 플라즈마 처리를 위한 노출시간, 산소비율, 전력의 증가에 따라 증가한 반면, 노출거리의 증가에 따라서는 사멸율이 감소하였다. 이 결과는 미생물 시료가 플라즈마에 노출되는 시간이 증가됨으로서 시료 내 NO 농도가 증가되고, E. coli의 사멸율 역시 증가되는 결과로 뒷받침할 수 있고, 미생물 사멸효과를 높이기 위해서는 활성종의 농도가 증가되어야 함을 의미한다. E. coli와 함께 B. cereus, B. subtilis, B. thuringiensis, B. atrophaeus를 대상으로 대기압 유전체 장벽방전 플라즈마에 의한 살균효과를 조사한 결과, 72.3~91.3%의 높은 사멸율을 나타내었다. 이러한 결과로 미루어, 대기압 유전체장벽방전 플라즈마기술은 다양한 미생물에 적용될 수 있는 유용한 살균기술임을 확인하였다.

Activation of melanogenesis by non-thermal atmospheric pressure plasma

  • Ali, Anser;Kumar, Naresh;Kumar, Ajeet;Rhee, Prof. Myungchull;Lee, SeungHyun;Attri, Pankaj;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.211.1-211.1
    • /
    • 2016
  • Several reports have demonstrated the wide range of nonthermal plasma applications in biomedical field including cancers, diabetics, wound healing and cosmetics. Recently, it has been shown that plasma is able to modulate the p38 MAPK and JUN level in cells which has a crucial role in melanin synthesis and skin pigmentation. Therefore we investigated the effect of plasma on melanogenesis in-vitro using melanoma (B16F10) cells and in-vivo using mouse and zebra fish. To investigate the mechanism of plasma action, plasma device characteristics were measured, reactive species inside and outside the cells were detected, and western blot was performed to find the signaling pathway involved in melanin activation in-vitro and in-vivo. This is the first report presenting the role of nonthermal plasma for melanogenesis which provides a new perspective of plasma in the field of dermatology.

  • PDF

DBD 플라즈마에 의한 연료개질 및 층류 화염 특성 변화 (The Effect of DBD Plasma on Fuel Reforming and on the Characteristics of Laminar Flames)

  • 김은강;박선호;송영훈;이원남
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.195-198
    • /
    • 2014
  • $Fuel/N_2$ and fuel/air mixtures were treated with non-thermal DBD plasma and the changes in characteristics of laminar diffusion flame have been observed. Flame of $Fuel/N_2$ mixture generated more soot under plasma condition while less amount of soot was formed from fuel/air mixture flame. Luminescence spectrum and gas chromatography results confirmed that plasma energy converts a fraction of fuel molecules into radicals, which then form $C_2$, $C_3$, $C_4$ and higher hydrocarbon under no oxygen condition or turn into CO, $CO_2$ and $H_2O$ when oxygen is present.

  • PDF

교류 펄스 전압을 이용한 평판형 대기압 유전격벽방전 플라즈마의 특성 분석 (A Study on the Dielectric Barrier Discharges Plasmas of Flat Atmospheric Pressure Using an AC Pulse Voltage)

  • 이종봉;하창승;김동현;이호준;이해준
    • 전기학회논문지
    • /
    • 제61권5호
    • /
    • pp.717-720
    • /
    • 2012
  • Various types of dielectric-barrier-discharge (DBD) devices have been developed for diverse applications for the last decade. In this study, a flat non-thermal DBD micro plasma source under atmospheric pressure has been developed. The flat-panel type plasma is generated by bipolar pulse voltages, and driving gas is air. In this study, the plasma source was investigated with intensified charge coupled device (ICCD) images and Optical Emission Spectroscopy (OES). The micro discharges are generated on the crossed electrodes. For theoretical analysis, 2-dimensional fluid simulation was performed. The plasma source can be driven in air, and thus the operation cost is low and the range of application is wide.

가변전압 가변주파수(VVVF) 교류 플라즈마 전원장치 (AC Plasma Power Supply with Variable Voltage and Variable Frequency)

  • 신완호;윤기복;정환명;최재호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1205-1207
    • /
    • 2004
  • AC plasma power supply is used to control a ozone generator and a air pollution gas. AC plasma power supply is composed of power semiconductor switch devices and control board adapted SHE(Selected Harmonic Elimination) PWM method. AC plasma power supply with sinusoidal VVVF(variable voltage and variable frequency) is realized. Its output voltage range is from 0 [V] to 20[kV] and output frequency range is from 8[kHz] to 20[kHz]. Using proposed system, AC high voltage and high frequency discharge is tested in the DBD(dieletric barrier discharge) reactor, and the space distribution of a its non-thermal plasma is observed. In spite of the increasement of voltage and frequency, the proposed system have a stable operation characteristics. It is verified by the experimental results.

  • PDF