• Title/Summary/Keyword: Non-thermal Plasma

Search Result 231, Processing Time 0.027 seconds

A Study for improving Decomposition Efficiency of Trichloroethylene using Atmospheric Plasma Reactor and Ozone Decomposing Catalyst (대기압플라즈마 및 오존 분해촉매를 이용한 트리클로로에틸렌의 분해효율 증진 연구)

  • Han, Sang-Bo;Park, Jae-Youn;Park, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.142-149
    • /
    • 2008
  • This paper proposes an effective decomposition method of trichloroethylene using pellet packed-bed non-thermal plasma reactor and catalyst. For that, two types of reactors filled with manganese dioxide and alumina pellets are designed. When $MnO_2$ packed reactor is used, TCE decomposition rate is high due to the generation of oxygen atom radicals at the surface of catalyst during ozone decomposition. In addition, When $Al_2O_3$ packed reactor is used, TCE is oxidized into DCAC and it did not decomposed into small molecules such as COx and $Cl_2$. However, the plasma processed gas using $Al_2O_3$ packed reactor is passed through the $MnO_2$ catalyst reactor, which is placed at the downstream of plasma reactor, the decomposition rate increased as well due to oxygen atom radicals through ozone decomposition. Therefore, the adequate use of $MnO_2$ catalyst in the plasma process is very promising way to increase the decomposition efficiency.

A Fundamental Study for a Photocatalytic Reactor Design (광촉매 반응치 설계를 위한 기초 연구)

  • 손건석;윤승원;고성혁;김대중;송재원;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.40-47
    • /
    • 2002
  • Because UV wavelength lights can activate photocatalysts, plasma is used as a light source of a photocatalytic reactor. Even though plasma has good intensity for photo reaction, substrate of catalyst coating was limited by the geometry of plasma generator. Usually bead type substrate was used for a pack bed type reactor. Honeycomb monolith type substrate was used with UV lamps instead plasma, due to the light penetration the honeycomb monolith length was too short to show good activity In this study a photocatalytic reactor, which is using a honeycomb monolith substrate, was investigated with plasma as an activation light source. As a parametric study the effects of 1311owing factors on plasma generation and power consumption are examined; supply voltage, substrate length, environment condition, catalyst loading and ratio. Using the test results, the practicability test was done with simulated synthetic gases representing bad smells and automotive exhaust gases.

Role of Non-Thermal DBD Plasma on Cell Migration and Cell Proliferation in Wound Healing

  • Ali, Anser;Lee, Seung Hyun;Kim, Yong Hee;Uhm, Han Sup;Choi, Eun Ha;Park, Bong Joo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.526-526
    • /
    • 2013
  • Plasma technology isbeing developed for a range of medical applications including wound healing. However, the effect of plasma on many cells and tissues is unclear. Cell migration and cell proliferation are very important biological processes which are affected by plasma exposure and might be a potential target for plasma therapy during wound healing treatment. In this study, we confirmed the plasma exposure time and incubation time after plasma treatment in skin fibroblast (L-929 cells) to evaluate the optimal conditions forplasma exposure to the cell in-vitro. In addition, we used a scratch method to generate artificial wound for evaluating the cell migration by plasma treatment. Where, the cells were treated with plasma and migration rate was observed by live-cell imaging device. To find the cell proliferation, cell viability assay was executed. The results of this study indicate the increased cell proliferation and migration on mild plasma treatment. The mechanisms for cell migration and cell proliferation after plasma treatment for future studies will be discussed.

  • PDF

Effects of DBD-bio-plasma on the HSP70 of Fibroblasts: A New Approach on Change of Molecular Level by Heat Shock in the Cell (Fibroblasts 세포주의 HSP70에 대한 DBD-bio-plasma의 effects: Cell에서 Heat Shock에 의한 Molecular Level 변화로의 새로운 접근법)

  • Kim, Kyoung-Yeon;Yi, Junyeong;Nam, Min-Kyung;Choi, Eun Ha;Rhim, Hyangshuk
    • KSBB Journal
    • /
    • v.30 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • Plasma is an ionized gas mixture, consisting of neutral particles, positive ions, negative electrons, electronically excited atoms and molecules, radicals, UV photons, and various reactive species. Also, plasma has unique physical properties distinct from gases, liquids, and solids. Until now, non-thermal plasmas have been widely utilized in bio-medical applications (called bio-plasma) and have been developed for the plasma-related devices that are used in the medical field. Although numerous bio-plasma studies have been performed in biomedicine, there is no confirmation of the nonthermal effect induced by bio-plasma. Standardization of the biological application of plasma has not been evaluated at the molecular level in living cells. In this context, we investigated the biological effect of bio-plasma on living cells. Hence, we treated the fibroblasts with Dielectric Bauvier Discharge bio-plasma (DBD), and assessed the characteristic change at the molecular level, one of the typical cellular responses. Heat shock protein 70 (HSP70) regulates its own protein level in response to stimuli. HSP70 responds to heat shock by increasing its own expression at the molecular level in cells. Hence, we confirmed the level of HSP70 after treatment of mouse embryonic fibroblasts (MEFs) with DBD. Interestingly, DBD-plasma induced cell death, but there was no difference in the level of HSP70, which is induced by heat shock stimuli, in DBD-treated MEFs. Our data provide the basic information on the interaction between MEFs and DBD, and can help to design a molecular approach in this field.

The effect of RF electric fields from an atmospheric micro-plasma needle device on the death of cells (침형 상압 마이크로 플라즈마 장치에서 발생하는 전기장이 세포 사멸에 미치는 효과)

  • Yoon, Hyun-Jin;Shon, Chae-Hwa;Kim, Gyoo-Cheon;Lee, Hae-June
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2249-2254
    • /
    • 2008
  • A non-thermal micron size plasma needle is applicable for medical treatment because it includes radicals, charged particles, ultraviolet emission, and strong electric fields. The electric fields around the plasma needle device driven by a radio frequency wave are investigated in order to calculate the power delivered to the cell. A commercial multi-physics code, CFD-ACE, was utilized for the calculation of electric fields for the optimization of the needle structure. The electric field and energy absorption profiles are presented with the variation of the device structure and the distance between the needle and tissues. The living tissues effectively absorb the radio frequency power from the plasma needle device with the covered pyrex structure.

Sterilization of Food-Borne Pathogenic Bacteria by Atmospheric Pressure Dielectric Barrier Discharge Plasma (대기압 유전체장벽방전 플라즈마에 의한 식품유해 미생물 살균)

  • Lee, Seung Je;Song, Yoon Seok;Park, Yu Ri;Ryu, Seung Min;Jeon, Hyeong Won;Eom, Sang Heum
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.3
    • /
    • pp.222-227
    • /
    • 2017
  • This study aimed to explore the potential for food-industry application of atmospheric pressure dielectric barrier discharge plasma (atmospheric pressure DBD plasma) as a non-thermal sterilization technology for microorganism. The effects of the key parameters such as power, oxygen ratio, exposure time and distance on Escherichia coli KCCM 21052 sterilization by the atmospheric pressure DBD plasma treatment were investigated. The experimental results revealed that increasing the power, exposure time or oxygen ratio and decreasing the exposure distance led to an improvement in the sterilization efficiency of E. coli. Furthermore, the atmospheric pressure DBD plasma (1.0 kW power, 1.0% (v/v) $O_2$, 5 min exposure time and 20 mm exposure distance) treatment was very effective for the sterilization of food-borne pathogenic bacteria. The sterilization rate of E. coli, Bacillus cereus KCCM 40935, Bacillus subtilis KCCM 12027, Bacillus thuringiensis KCCM 11429 and Bacillus atrophaeus KCCM 11314 were 72.3%, 74.6%, 88.5%, 84.7% and 91.3%, respectively.

Activation of melanogenesis by non-thermal atmospheric pressure plasma

  • Ali, Anser;Kumar, Naresh;Kumar, Ajeet;Rhee, Prof. Myungchull;Lee, SeungHyun;Attri, Pankaj;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.211.1-211.1
    • /
    • 2016
  • Several reports have demonstrated the wide range of nonthermal plasma applications in biomedical field including cancers, diabetics, wound healing and cosmetics. Recently, it has been shown that plasma is able to modulate the p38 MAPK and JUN level in cells which has a crucial role in melanin synthesis and skin pigmentation. Therefore we investigated the effect of plasma on melanogenesis in-vitro using melanoma (B16F10) cells and in-vivo using mouse and zebra fish. To investigate the mechanism of plasma action, plasma device characteristics were measured, reactive species inside and outside the cells were detected, and western blot was performed to find the signaling pathway involved in melanin activation in-vitro and in-vivo. This is the first report presenting the role of nonthermal plasma for melanogenesis which provides a new perspective of plasma in the field of dermatology.

  • PDF

The Effect of DBD Plasma on Fuel Reforming and on the Characteristics of Laminar Flames (DBD 플라즈마에 의한 연료개질 및 층류 화염 특성 변화)

  • Kim, Eungang;Park, Sunho;Song, Young-Hoon;Lee, Wonnam
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.195-198
    • /
    • 2014
  • $Fuel/N_2$ and fuel/air mixtures were treated with non-thermal DBD plasma and the changes in characteristics of laminar diffusion flame have been observed. Flame of $Fuel/N_2$ mixture generated more soot under plasma condition while less amount of soot was formed from fuel/air mixture flame. Luminescence spectrum and gas chromatography results confirmed that plasma energy converts a fraction of fuel molecules into radicals, which then form $C_2$, $C_3$, $C_4$ and higher hydrocarbon under no oxygen condition or turn into CO, $CO_2$ and $H_2O$ when oxygen is present.

  • PDF

A Study on the Dielectric Barrier Discharges Plasmas of Flat Atmospheric Pressure Using an AC Pulse Voltage (교류 펄스 전압을 이용한 평판형 대기압 유전격벽방전 플라즈마의 특성 분석)

  • Lee, Jong-Bong;Ha, Chang-Seung;Kim, Dong-Hyun;Lee, Ho-Jun;Lee, Hae-June
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.717-720
    • /
    • 2012
  • Various types of dielectric-barrier-discharge (DBD) devices have been developed for diverse applications for the last decade. In this study, a flat non-thermal DBD micro plasma source under atmospheric pressure has been developed. The flat-panel type plasma is generated by bipolar pulse voltages, and driving gas is air. In this study, the plasma source was investigated with intensified charge coupled device (ICCD) images and Optical Emission Spectroscopy (OES). The micro discharges are generated on the crossed electrodes. For theoretical analysis, 2-dimensional fluid simulation was performed. The plasma source can be driven in air, and thus the operation cost is low and the range of application is wide.

AC Plasma Power Supply with Variable Voltage and Variable Frequency (가변전압 가변주파수(VVVF) 교류 플라즈마 전원장치)

  • Shin Wan-Ho;Yun Kee-Pok;Jeoung Hwan-Myoung;Choi Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1205-1207
    • /
    • 2004
  • AC plasma power supply is used to control a ozone generator and a air pollution gas. AC plasma power supply is composed of power semiconductor switch devices and control board adapted SHE(Selected Harmonic Elimination) PWM method. AC plasma power supply with sinusoidal VVVF(variable voltage and variable frequency) is realized. Its output voltage range is from 0 [V] to 20[kV] and output frequency range is from 8[kHz] to 20[kHz]. Using proposed system, AC high voltage and high frequency discharge is tested in the DBD(dieletric barrier discharge) reactor, and the space distribution of a its non-thermal plasma is observed. In spite of the increasement of voltage and frequency, the proposed system have a stable operation characteristics. It is verified by the experimental results.

  • PDF