• Title/Summary/Keyword: Non-specific inhibitor

Search Result 77, Processing Time 0.025 seconds

Characterization of Thiol Protease Inhibitor Isolated from Streptornyces sp. KISl3 (Streptomyces sp. KIS13 균주에서 분리한 thiol계 단백질분해효소 저해물질의 특성)

  • 김인섭;이계준
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.5
    • /
    • pp.501-505
    • /
    • 1990
  • Streptomyces sp. KISl3 isolated from soil was found to produce low molecular weight thiol protease inhibitors. The protease inhibitor production was closely linked to the cell growth and regulated by growth condition. The inhibitor was purified from the culture broth through butanol extraction, silicagel 60 column chromatography, Sephadex LH-20 gel filtration and preparative HPLC. The inhibitor showed specific inhibitory activity to thiol protease such as papain, picin and bromelain. The mode of inhibition against papain to Hammersten casein as a substrate was non-competitive.

  • PDF

Mornitoring and Identification of Human Astrovirus from Groundwater in Korea Based on Highly Sensitive RT-nested PCR Primer Sets

  • Lee, Siwon;Bae, Kyung Seon;Park, Jihyun;Kim, Jin-Ho;Lee, Jin-Young;Choi, Jiwon;Park, Eung-Roh;You, Kyung-A
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.255-263
    • /
    • 2021
  • Human Astrovirus (HuAstV) is an important gastrointestinal pathogen that is frequently reported worldwide. Monitoring of contaminated groundwater has been suggested since HuAstV is transmitted through the fecal-oral route. This study developed a test method based on conventional reverse transcription (RT)-nested polymerase chain reaction (PCR) that involves SL® non-specific reaction inhibitor for unknown non-specific amplification taking place in the groundwater environment. An optimal method for detecting HuAstV in groundwater sample through analysis and comparison against conventionally reported method was also suggested. The developed method enabled the production of nested PCR amplicon of 630 nt, which is a sufficient length for similarity analysis based on sequencing and genotyping. Amplicons suspected to be HuAstV were amplified in two out of the twenty groundwater samples collected in Korea, presenting 99.77% and 99.73% similarity against HuAstV 1 strain lhar/2011/kor (JN887820.1) in sequencing, respectively. These amplicons were identified as HuAstV 1.

Production of an Anti-dementia Butyrylcholinesterase Inhibitor from Non-pathogenic Wild Yeast, Saccharomyces cerevisiae WJSL 0113 (비병원성 야생효모 Saccharomyces cerevisiae WJSL 0113으로부터 항치매성 Butyrylcholinesterase 저해물질의 생산)

  • Han, Sang-Min;Park, Seon-Jeong;Jang, Ji-Eun;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.49 no.2
    • /
    • pp.243-248
    • /
    • 2021
  • In this study, screening of potent non-pathogenic wild yeast with high anti-dementia butyrylcholinesterase (BChE) inhibitory activity and production condition of a BChE inhibitor were described. Among 36 non-pathogenic wild yeasts, Saccharomyces cerevisiae WJSL 0113 showed the highest BChE inhibitory activity of 85.2%. The specific BChE inhibitor was maximally produced when S. cerevisiae WJSL 0113 was cultured at 30℃ for 48 h in a yeast extract-peptone-dextrose medium.

A Comparison of the In Vitro Inhibitory Effects of Thelephoric Acid and SKF-525A on Human Cytochrome P450 Activity

  • Song, Min;Do, HyunHee;Kwon, Oh Kwang;Yang, Eun-Ju;Bae, Jong-Sup;Jeong, Tae Cheon;Song, Kyung-Sik;Lee, Sangkyu
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • Thelephoric acid is an antioxidant produced by the hydrolysis of polyozellin, which is isolated from Polyozellus multiplex. In the present study, the inhibitory effects of polyozellin and thelephoric acid on 9 cytochrome P450 (CYP) family members (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4) were examined in pooled human liver microsomes (HLMs) using a cocktail probe assay. Polyozellin exhibited weak inhibitory effects on the activities of all 9 CYPs examined, whereas thelephoric acid exhibited dose- and time-dependent inhibition of all 9 CYP isoforms ($IC_{50}$ values, $3.2-33.7{\mu}M$). Dixon plots of CYP inhibition indicated that thelephoric acid was a competitive inhibitor of CYP1A2 and CYP3A4. In contrast, thelephoric acid was a noncompetitive inhibitor of CYP2D6. Our findings indicate that thelephoric acid may be a novel, non-specific CYP inhibitor, suggesting that it could replace SKF-525A in inhibitory studies designed to investigate the effects of CYP enzymes on the metabolism of given compounds.

Increased Hypermethylation of Glutathione S-Transferase P1, DNA-Binding Protein Inhibitor, Death Associated Protein Kinase and Paired Box Protein-5 Genes in Triple-Negative Breast Cancer Saudi Females

  • Hafez, Mohamed M.;Al-Shabanah, Othman A.;Al-Rejaie, Salim S.;Al-Harbi, Naif O.;Hassan, Zeinab K.;Alsheikh, Abdulmalik;Theyab, Abdurrahman I. Al;Aldelemy, Meshan L.;Sayed-Ahmed, Mohamed M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.541-549
    • /
    • 2015
  • Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer (BC) with higher metastatic rate and both local and systemic recurrence compared to non-TNBC. The generation of reactive oxygen species (ROS) secondary to oxidative stress is associated with DNA damage, chromosomal degradation and alterations of both hypermethylation and hypomethylation of DNA. This study concerns differential methylation of promoter regions in specific groups of genes in TNBC and non-TNBC Saudi females in an effort to understand whether epigenetic events might be involved in breast carcinogenesis, and whether they might be used as markers for Saudi BCs. Methylation of glutathione S-transferase P1 (GSTP1), T-cadherin (CDH13), Paired box protein 5 (PAX5), death associated protein kinase (DAPK), twist-related protein (TWIST), DNA-binding protein inhibitor (ID4), High In Normal-1 (HIN-1), cyclin-dependent kinase inhibitor 2A (p16), cyclin D2 and retinoic acid receptor-${\beta}$ ($RAR{\beta}1$) genes was analyzed by methylation specific polymerase chain reaction (MSP) in 200 archival formalin-fixed paraffin embedded BC tissues divided into 3 groups; benign breast tissues (20), TNBC (80) and non-TNBC (100). The relationships between methylation status, and clinical and pathological characteristics of patients and tumors were assessed. Higher frequencies of GSTP1, ID4, TWIST, DAPK, PAX5 and HIN-1 hypermethylation were found in TNBC than in non-TNBC. Hypermethylation of GSTP1, CDH13, ID4, DAPK, HIN-1 and PAX5 increased with tumor grade increasing. Other statistically significant correlations were identified with studied genes. Data from this study suggest that increased hypermethylation of GSTP1, ID4, TWIST, DAPK, PAX5 and HIN-1 genes in TNBC than in non-TNBC can act as useful biomarker for BCs in the Saudi population. The higher frequency of specific hypermethylated genes paralleling tumor grade, size and lymph node involvement suggests contributions to breast cancer initiation and progression.

Free fatty acid-induced histone acetyltransferase activity accelerates lipid accumulation in HepG2 cells

  • Chung, Sangwon;Hwang, Jin-Taek;Park, Jae Ho;Choi, Hyo-Kyoung
    • Nutrition Research and Practice
    • /
    • v.13 no.3
    • /
    • pp.196-204
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease triggered by epigenetic alterations, including lysine acetylation at histone or non-histone proteins, affecting the stability or transcription of lipogenic genes. Although various natural dietary compounds have anti-lipogenic effects, their effects on the acetylation status and lipid metabolism in the liver have not been thoroughly investigated. MATERIALS/METHODS: Following oleic-palmitic acid (OPA)-induced lipid accumulation in HepG2 cells, the acetylation status of histone and non-histone proteins, HAT activity, and mRNA expression of representative lipogenic genes, including $PPAR{\gamma}$, SREBP-1c, ACLY, and FASN, were evaluated. Furthermore, correlations between lipid accumulation and HAT activity for 22 representative natural food extracts (NExs) were evaluated. RESULTS: Non-histone protein acetylation increased following OPA treatment and the acetylation of histones H3K9, H4K8, and H4K16 was accelerated, accompanied by an increase in HAT activity. OPA-induced increases in the mRNA expression of lipogenic genes were down-regulated by C-646, a p300/CBP-specific inhibitor. Finally, we detected a positive correlation between HAT activity and lipid accumulation (Pearson's correlation coefficient = 0.604) using 22 NExs. CONCLUSIONS: Our results suggest that NExs have novel applications as nutraceutical agents with HAT inhibitor activity for the prevention and treatment of NAFLD.

Tyrphostin ErbB2 Inhibitors AG825 and AG879 Have Non-specific Suppressive Effects on gp130/ STAT3 Signaling

  • Lee, Hyun-Kyoung;Seo, In-Ae;Lee, Sang-Hwa;Seo, Su-Young;Kim, Kyung-Sup;Park, Hwan-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.5
    • /
    • pp.281-286
    • /
    • 2008
  • Although the interaction between gp130 and the ErbB family has frequently been shown in cancer cells, the mechanism of this interaction remains unclear and controversial. In the present study, we found that specific tyrphostin inhibitors of ErbB2 (AG825 and AG879), but not ErbB1 inhibitor (AG1478), suppressed IL-6-induced tyrosine phosphorylation of STAT3 in schwannoma cells. However, biochemical evidence for transactivation of ErbB2 by IL-6 was not observed. Additionally, the inhibition of ErbB2 expression, with either a specific RNAi or transfection of an ErbB2 mutant lacking the intracellular domain did not inhibit the IL-6-induced tyrosine phosphorylation of STAT3. Thus, it seems that tyrphostins, which are known as specific inhibitors of the ErbB2 kinase, may have non-specific suppressive effects on the IL-6/STAT3 pathway.

Effect of Farnesyltransferase Inhibitor R115777 on Mitochondria of Plasmodium falciparum

  • Ha, Young Ran;Hwang, Bae-Geun;Hong, Yeonchul;Yang, Hye-Won;Lee, Sang Joon
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.4
    • /
    • pp.421-430
    • /
    • 2015
  • The parasite Plasmodium falciparum causes severe malaria and is the most dangerous to humans. However, it exhibits resistance to their drugs. Farnesyltransferase has been identified in pathogenic protozoa of the genera Plasmodium and the target of farnesyltransferase includes Ras family. Therefore, the inhibition of farnesyltransferase has been suggested as a new strategy for the treatment of malaria. However, the exact functional mechanism of this agent is still unknown. In addition, the effect of farnesyltransferase inhibitor (FTIs) on mitochondrial level of malaria parasites is not fully understood. In this study, therefore, the effect of a FTI R115777 on the function of mitochondria of P. falciparum was investigated experimentally. As a result, FTI R115777 was found to suppress the infection rate of malaria parasites under in vitro condition. It also reduces the copy number of mtDNA-encoded cytochrome c oxidase III. In addition, the mitochondrial membrane potential (${\Delta}{\Psi}m$) and the green fluorescence intensity of MitoTracker were decreased by FTI R115777. Chloroquine and atovaquone were measured by the mtDNA copy number as mitochondrial non-specific or specific inhibitor, respectively. Chloroquine did not affect the copy number of mtDNA-encoded cytochrome c oxidase III, while atovaquone induced to change the mtDNA copy number. These results suggest that FTI R115777 has strong influence on the mitochondrial function of P. falciparum. It may have therapeutic potential for malaria by targeting the mitochondria of parasites.

Development of Molecular Diagnostic System with High Sensitivity for the Detection of Human Sapovirus from Water Environments

  • Lee, Siwon;Bae, Kyung Seon;Lee, Jin-Young;Joo, Youn-Lee;Kim, Ji-Hae;You, Kyung-A
    • Biomedical Science Letters
    • /
    • v.27 no.1
    • /
    • pp.35-43
    • /
    • 2021
  • Human Sapovirus (HuSaV) is one of the major causes of acute gastroenteritis in humans, and it is used as a molecular diagnostic technique based on polymerase chain reaction (PCR) from humans, food, shellfish, and aquatic environments. In this study, the HuSaV diagnosis technique was used in an aquatic environment where a number of PCR inhibitors are included and pathogens, such as viruses, are estimated to exist at low concentration levels. HuSaV-specific primers are improved to detect 38 strains registered in the National Center for Biotechnology Information (NCBI). The established optimal condition and the composition, including the RT-nested PCR primers and SL® Non-specific reaction inhibitor, were found to have 100 times higher sensitivity based on HuSaV plasmid than the previously reported methods (100 ag based on HuSaV plasmid 1 ng/μL). Through an artificial infection test, the developed method was able to detect at least 1 fg/μL of HuSaV plasmid contaminated with total nucleic acid extracted from groundwater. In addition, RT-nested PCR primer sets for HuSaV detection can react, and a positive control is developed to verify false positives. This study is expected to be used as a HuSaV monitoring method in the future and applied to the safety response to HuSaV from water environments.

PKC-Independent Stimulation of Cardiac $Na^+/Ca^{2+}$ Exchanger by Staurosporine

  • Kang, Tong-Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.5
    • /
    • pp.259-265
    • /
    • 2008
  • $[Ca^{2+}]_i$ transients by reverse mode of cardiac $Na^+/Ca^{2+}$ exchanger (NCX1) were recorded in fura-2 loaded BHK cells with stable expression of NCX1. Repeated stimulation of reverse NCX1 produced a long-lasting decrease of $Ca^{2+}$ transients ('rundown'). Rundown of NCX1 was independent of membrane $PIP_2$ depletion. Although the activation of protein kinase C (PKC) was observed during the $Ca^{2+}$ transients, neither a selective PKC inhibitor (calphostin C) nor a PKC activator (PMA) changed the degrees of rundown. By comparison, a non-specific PKC inhibitor, staurosporine (STS), reversed rundown in a dose-dependent and reversible manner. The action of STS was unaffected by pretreatment of the cells with calphostin C, PMA, or forskolin. Taken together, the results suggest that the stimulation of reverse NCX1 by STS is independent of PKC and/or PKA inhibition.