• 제목/요약/키워드: Non-salient permanent magnet synchronous motor drive

검색결과 8건 처리시간 0.023초

Sensorless Control of Non-salient Permanent Magnet Synchronous Motor Drives using Rotor Position Tracking PI Controller

  • Lee Jong-Kun;Seok Jul-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권2호
    • /
    • pp.189-195
    • /
    • 2005
  • This paper presents a new velocity estimation strategy for a non-salient permanent magnet synchronous motor drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system, which contains the rotor position error information. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error at zero. For zero and low speed operation, the PI gain of the rotor position tracking controller has a variable structure according to the estimated rotor velocity. Then, at zero speed, the rotor position and velocity have sluggish dynamics because the varying gains are very low in this region. In order to boost the bandwidth of the PI controller during zero speed, the loop recovery technique is applied to the control system. The PI tuning formulas are also derived by analyzing this control system by frequency domain specifications such as phase margin and bandwidth assignment.

회전자 위치 추정 PI 제어기를 이용한 비돌극형 PMSM 센서리스 제어 (Sensorless Control of Non-salient PMSM using Rotor Position Tracking PI Controller)

  • 이종건;석줄기;이동춘;김흥근
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권11호
    • /
    • pp.664-670
    • /
    • 2004
  • This paper presents a new velocity estimation strategy of a non-salient permanent magnet synchronous motor (PMSM) drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system that has the information of rotor position error. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error to zero. For zero and low speed operation, PI controller gains of rotor position tracking controller have a variable structure according to the estimated rotor velocity. In order to boost the bandwidth of PI controller around zero speed, a loop recovery technique is applied to the control system. The proposed method only requires the flux linkage of permanent magnet and is insensitive to the parameter estimation error and variation. The designers can easily determine the possible operating range with a desired bandwidth and perform the vector control even at low speeds. The experimental results show the satisfactory operation of the proposed sensorless algorithm under rated load conditions.

Mathematical Analysis and Simulation Based Survey on Initial Pole Position Estimation of Surface Permanent Magnet Synchronous Motor

  • Kim, Tae-Woong;Wheeler, Patrick;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • 제9권3호
    • /
    • pp.499-506
    • /
    • 2009
  • In this paper, the initial pole-position estimation of a surface (non-salient) permanent magnet synchronous motor is mathematically analyzed and surveyed on the basis of simulation analysis, and developed for accurate servo motor drive. This algorithm is well carried out under the full closed-loop position control without any pole sensors and is completely insensitive to any motor parameters. This estimation is based on the principle that the initial pole-position is simply calculated by the reverse trigonometric function using the two feedback currents in the full closed-loop position control. The proposed algorithm consists of the predefined reference position profile, the information of feedback currents, speed, and relative position, and the reverse trigonometric function for the initial-pole position estimation. Comparing with the existing researches, the mathematical analysis is introduced to get a more accurate initial pole-position of the surface permanent magnet motor under the closed-loop position control. It is found that the proposed algorithm can be easily applied in servo drive applications because it satisfies the following user's specifications; accuracy and moving distance.

인버터의 전류측정 오차에 기인하는 영구자석형 동기전동기의 토크리플 저감

  • 홍순찬;윤덕용;원의연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1996년도 창립기념 전력전자학술발표회 논문집
    • /
    • pp.26-30
    • /
    • 1996
  • This paper proposes a novel method to reduce the torque ripple due to the non-ideality of the current sensing parts in vector-controlled inverter-fed PMSM(Permanent Magnet Synchronous Motor) drive systems. The motor output torque equations are derived in terms of their offset voltages and different voltage transducing gains. And the effects of phase current errors on motor torque are analyzed for both salient PMSM and non-salient PMSM. The proposed method can eliminate the torque ripple by nulling the offset voltages and setting the voltage transducing gains to the same value. To verify the proposed method, digital simulations are carried out for non-salient PMSM.

  • PDF

Sliding Mode Observer for Sensorless Control of IPMSM Drives

  • Jung, Young-Seok;Kim, Marn-Go
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.117-123
    • /
    • 2009
  • This paper presents a sliding mode observer for the sensorless control of interior permanent magnet synchronous motor (IPMSM) drives. The sliding mode observer has been presented as a robust estimation method. Most of these previous works, however, were not for an interior PMSM (IPMSM), but for a non-salient pole PMSM and its observer design is conducted in the stationary reference frame. Thus, in this paper, we investigate the design of a sliding mode observer and its driving characteristics for an IPMSM. The proposed sliding mode observer is designed in the rotating reference frame, and good drive performance is achieved even when the observer parameters are mismatched with those of an actual motor. The proposed method is applied to a 600W IPMSM, and, then, the measurement results are presented.

인버터의 전류측정 오차에 기인하는 교류전동기의 토크리플 저감 (Reduction of Torque Ripple due to Current-Sensing Errors in Inverter-Fed AC Motor Systems)

  • 윤덕용;홍순찬
    • 전력전자학회논문지
    • /
    • 제3권4호
    • /
    • pp.280-286
    • /
    • 1998
  • 본 논문에서는 벡터제어방식의 인버터에 의하여 구동되는 교류전동기 제어 시스템에서 전류특정회로에서의 측정오차에 기인하는 전동기의 토크리플을 저감하는 방법을 제안한다. 2상의 전류를 측정하는 회로에서의 오프셋 전압과 전압증폭률이 서로 다를 때 전동기 출력토크에 발생되는 리플을 각각 정량적으로 분석하고, 이로부터 온라인 상태에서 실시간으로 토크리플을 제거할 수 있는 알고리즘을 제시하였다. 제안된 방식의 유용성을 확인하기 위하여 이를 영구자석형 동기전동기에 적용하였을 경우에 대하여 출력토크의 리플을 계산하고 이를 제거하는 알고리즘을 컴퓨터로 시뮬레이션하였다.

  • PDF

자속축 전류제어기 출력전압를 이용한 PMSM 센서리스 제어 (Senseless Control of PMSM using Current Regulator Output Voltage in the Synchronous D-axis)

  • 이종건;석줄기;이동춘
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.147-149
    • /
    • 2004
  • This paper presents a new velocity estimation strategy of a non-salient permanent magnet synchronous motor(PMSM) drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system which has the information of rotor position error. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error to zero. For zero and low speed operation, the PI gains of rotor position tracking controller have a variable structure. The PI tuning formulas are derived by analyzing this control system using the frequency domain specifications such as phase margin and bandwidth assignment.

  • PDF

회전자 위치 추정 PI 제어기를 이용한 PMSM 센서리스 제어 (Sensorless Control of PMSM using Rotor Position Tracking PI Controller)

  • 이종건;석줄기;이동춘
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.176-178
    • /
    • 2003
  • This paper presents a new velocity estimation strategy of a non-salient permanent magnet synchronous motor(PMSM) drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system which has the information of rotor position error. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error to aero. For zero and low speed operation, the PI gains of rotor position tracking controller have a variable structure. The PI tuning formulas are derived by analyzing this control system using the frequency domain specifications such as phase margin and bandwidth assignment.

  • PDF