• Title/Summary/Keyword: Non-safety system

Search Result 872, Processing Time 0.026 seconds

A Study on the Analysis and the Improvement of the Safety and Health Consciousness between the Regular Employees and Non-regular Employees (정규직 근로자와 비정규직 근로자의 안전보건의식 실태 분석 및 개선방안 연구)

  • Lee, Man-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.83-89
    • /
    • 2007
  • This study is perform to improve the current point at issue of the non-regular employees, comparing the safety and health consciousness of between the regular employees and non-regular employees in manufacturing factory. The investigation is carried out using the statistical analysis. The study presents that most of the non-regular employees answer in the negative the current job satisfaction, work load, work risk, concern on the safety and health, education, occupational safety and health system than the regular employees. For the improvement of these problems, the government's safety and health policy should be changed and acknowledgement of the employer and employee on the safety and health should be improved.

Development of Non-Adhesive, Non-Contact Inclinometer Slope Laser Measuring (ISLM) System and its Control Algorithm (레이저를 이용한 기울기 측정 장치 및 이의 제어 방법 개발)

  • Kim, Jae-Hyun;Lee, Seong-Min;Lee, Kihak;Choi, Woo-Suk;Baek, Seung-hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.25-34
    • /
    • 2021
  • This study develops a new device system for measuring a slope of object with non-adhesive, non-contact and non-face-to-face, namely Inclinometer Slope Laser Measuring (ISLM), that is applicable in the field. This system includes cradle, laser, camera, and computer and the filming and is performed after laser projection at programmed intervals. After measuring the amount of displacement converted to numerical values, these values can then be transferred to the office using the selected data transmission method. The obtained results from the test carried out to verify the reliability of the ISLM system indicated that the ISLM system can measure with accurately level of 0.1mm/Pixel at 1m distance and when increasing the camera resolution, the precision might increase proportionally. Therefore, the proposed measure system may widely apply on-site for various constructions, especially, in the case of object with very high surface temperature where exhibits difficulty to directly measure the adjacent structures. However, due to the sensitive reaction to the illuminance, this method can be applied with caution at times of large changes in illuminance, such as at dawn and at dusk.

A Study on rapid evaluation of reliability for acyclic non-linear graph (Acyclic non-linear graph의 빠른 신뢰도 계산방법에 관한 연구)

  • 이광원;이현규
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.136-144
    • /
    • 1998
  • FTA is the most commonly used method among quantitative safety assessment. In case that the observing system become larger, a lot of terms should be calculated to accomplish FTA through complicated process. Many methods have been tried to reduce time, one of tries is How to calculate the reliability using graph theory after changing W to graph. This paper suggests an algorithm that can calculate more rapidly reliability and outset of system expressed by non-linear graph as like as FTA or CCA.

  • PDF

Evaluation of the Environmental Qualification for Non-metallic Parts (비금속부품 내환경검증 수명평가)

  • Bhang, Keug-Jin;Hong, Jun-Hee
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.52-59
    • /
    • 2016
  • Environmental Qualification has been almost developed except those of Non-Material Sub-components for valves and pumps though the time has only passed about 10years since EQ test launch of Korea. However EQ test has been performed by a few of engineers under the conditions that experience of EQ test is insufficient and EQ system is not developed completely. In recent years, Strengthen Nuclear Safety Regulation is being done Strictly Nuclear safety components Verification Procedure for Non-Material Sub-components, but the reports contain only performance test results, not Enviro nmental test methods relating to real Aging Degradation. In this Study, there were developed to performance systematically research to acquire EQ technology for five specimens of the Non-Material Sub-components in the Nuclear Power Plant.

Architectural model driven dependability analysis of computer based safety system in nuclear power plant

  • Wakankar, Amol;Kabra, Ashutosh;Bhattacharjee, A.K.;Karmakar, Gopinath
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.463-478
    • /
    • 2019
  • The most important non-functional requirements for dependability of any Embedded Real-Time Safety Systems are safety, availability and reliability requirements. System architecture plays the primary role in achieving these requirements. Compliance with these non-functional requirements should be ensured early in the development cycle with appropriate considerations during architectural design. In this paper, we present an application of system architecture modeling for quantitative assessment of system dependability. We use probabilistic model checker (PRISM), for dependability analysis of the DTMC model derived from system architecture model. In general, the model checking techniques do not scale well for analyzing large systems, because of prohibitively large state space. It limits the use of model checking techniques in analyzing the systems of practical interest. We propose abstraction based compositional analysis methodology to circumvent this limitation. The effectiveness of the proposed methodology has been demonstrated using the case study involving the dependability analysis of safety system of a large Pressurized Water Reactor (PWR).

Design of safety critical and control systems of Nuclear Power Plants using Petri nets

  • Singh, Pooja;Singh, Lalit Kumar
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1289-1296
    • /
    • 2019
  • Non-functional requirements plays a critical role in designing variety of applications domain ranges from safety-critical systems to simple gaming applications. Performance is one of the crucial non-functional requirement, especially in control and safety systems, that validates the design. System risk can be quantified as a product of probability of system failure and severity of its impact. In this paper, we devise a technique to do the performance analysis of safety critical and control systems and to estimate performance based risk factor. The technique elaborates Petri nets to estimate performability to ensure system dependability requirements. We illustrate the technique on a case study of Nuclear Power Plant system. The technique has been validated on 17 safety critical and control systems of Nuclear Power Plant.

Field Inspection of Phase-Array Ultrasonic for PolyEthylene Electrofusion Joints

  • Kil, Seong-Hee;Jo, Young-Do;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.22-25
    • /
    • 2012
  • Welding and/or fusion in polyethylene(PE) system made on site is focused on the control of the welding or fusion process to follow proper procedure. The process control is important, but it is not sufficient for the long term reliability of a pipe system. To achieve the rate of failure close to zero, Non Destructive Testing(NDT) is necessary in addition to joining process control. For electrofusion joints several non-destructive testing methods are available. The ultrasonic phased array technique is possible to detect various defects including wire deviations and regions with lack of fusion. In this studies, testing was carried to detect the defect after electrofusion joining of polyethylene piping is utilized by the ultrasonic phased array technique. From testing data, ultrasonic phased array technique is recommended as a reliable non-destructive testing method.

A Systems Engineering Approach to Real-Time Data Communication Network for the APR1400

  • Ibrahim, Ahmad Salah;Jung, Jae-cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.9-17
    • /
    • 2017
  • Concept development of a real-time Field Programmable Gate Array (FPGA)-based switched Ethernet data communication network for the Man-Machine Interface System (MMIS) is presented in this paper. The proposed design discussed in this research is based on the systems engineering (SE) approach. The design methodology is effectively developed by defining the concept development stage of the life-cycle model consisting of three successive phases, which are developed and discussed: needs analysis; concept exploration; and concept definition. This life-cycle model is used to develop an FPGA-based time-triggered Ethernet (TTE) switched data communication network for the non-safety division of MMIS system to provide real-time data transfer from the safety control systems to the non-safety division of MMIS and between the non-safety systems including control, monitoring, and information display systems. The original IEEE standard 802.3 Ethernet networks were not typically designed or implemented for providing real-time data transmission, however implementing a network that provides both real-time and on-demand data transmission is achievable using the real-time Ethernet technology. To develop the design effectively, context diagrams are implied. Conformance to the stakeholders needs, system requirements, and relevant codes and standards together with utilizing the TTE technology are used to analyze, synthesize, and develop the MMIS non-safety data communication network of the APR1400 nuclear power plant.

Development of an Intelligent Control System to Integrate Computer Vision Technology and Big Data of Safety Accidents in Korea

  • KANG, Sung Won;PARK, Sung Yong;SHIN, Jae Kwon;YOO, Wi Sung;SHIN, Yoonseok
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.721-727
    • /
    • 2022
  • Construction safety remains an ongoing concern, and project managers have been increasingly forced to cope with myriad uncertainties related to human operations on construction sites and the lack of a skilled workforce in hazardous circumstances. Various construction fatality monitoring systems have been widely proposed as alternatives to overcome these difficulties and to improve safety management performance. In this study, we propose an intelligent, automatic control system that can proactively protect workers using both the analysis of big data of past safety accidents, as well as the real-time detection of worker non-compliance in using personal protective equipment (PPE) on a construction site. These data are obtained using computer vision technology and data analytics, which are integrated and reinforced by lessons learned from the analysis of big data of safety accidents that occurred in the last 10 years. The system offers data-informed recommendations for high-risk workers, and proactively eliminates the possibility of safety accidents. As an illustrative case, we selected a pilot project and applied the proposed system to workers in uncontrolled environments. Decreases in workers PPE non-compliance rates, improvements in variable compliance rates, reductions in severe fatalities through guidelines that are customized according to the worker, and accelerations in safety performance achievements are expected.

  • PDF

Development of Accident Cause Analysis Model for Construction Site (건설업 사고 발생원인 파악을 위한 사고 분석 모델 개발)

  • Lim, Won Jun;Kee, Jung Hun;Seong, Joo Hyun;Park, Jong Yil
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.45-52
    • /
    • 2019
  • Accident analysis models were developed to improve the construction site safety and case studies was conducted. In 2016, 86% of fatality accidents occurred due to simple unsafe acts. Structure related accidents are less frequent than the non structure related causes, but the number of casualties per accident is two times higher than non structure one. In the view of risk perception, efforts should be given to reduce accidents caused by low frequency - high consequence structure related causes. In case of structure related accident, structural safety inspection and management (including quality), ground condition management / inspection technology, and provision of risk information delivery system in case of non structure related accident were proposed as a solution. In analysis of relationship between safety related stakeholder, the main problem were the lack of knowledge of controller and player, loss of control due to duplicated controls, lack of communication system of risk information, and relative position error of controller and player.