• Title/Summary/Keyword: Non-rapid eye movement sleep

Search Result 27, Processing Time 0.027 seconds

Sleep-Promoting Effect of Ecklonia cava: Ethanol Extract Promotes Non-rapid Eye Movement Sleep in C57BL/6N Mice

  • Yoon, Minseok;Kim, Jin Soo;Jo, Jinho;Han, Daeseok;Cho, Suengmok
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.19-25
    • /
    • 2014
  • We investigated the effects of Ecklonia cava ethanol extract (ECE) on sleep architecture and sleep profiles. ECE was orally administered at a dose of 100, 250, or 500 mg/kg to C57BL/6N mice and its effects were measured by recording electroencephalogram (EEG) and electromyogram. Administration of ECE (250 and 500 mg/kg) significantly induced non-rapid eye movement sleep (NREMS) without affecting rapid eye movement sleep. The increase in NREMS by ECE (500 mg/kg) was significant (P < 0.05) during the first 2 h after administration. In addition, ECE had no effect on EEG power density (an indicator of sleep quality) in NREMS. These results suggest that ECE induces NREMS in a manner similar to physiological sleep.

Repeated Administration of Korea Red Ginseng Extract Increases Non-Rapid Eye Movement Sleep via GABAAergic Systems

  • Lee, Chung-Il;Kim, Chung-Soo;Han, Jin-Yi;Oh, Eun-Hye;Oh, Ki-Wan;Eun, Jae-Soon
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.403-410
    • /
    • 2012
  • The current inquiry was conducted to assess the change in sleep architecture after long periods of administration to determine whether ginseng can be used in the therapy of sleeplessness. Following post-surgical recovery, red ginseng extract (RGE, 200 mg/kg) was orally administrated to rats for 9 d. Data were gathered on the 1st, 5th, and 9th day, and an electroencephalogram was recorded 24 h after RGE administration. Polygraphic signs of unobstructed sleep-wake activities were simultaneously recorded with sleep-wake recording electrodes from 11:00 a.m. to 5:00 p.m. for 6 h. Rodents were generally tamed to freely moving polygraphic recording conditions. Although the 1st and 5th day of RGE treatment showed no effect on power densities in nonrapid eye movement (NREM) and rapid eye movement (REM) sleep, the 9th day of RGE administration showed augmented ${\alpha}$-wave (8.0 to 13.0 Hz) power densities in NREM and REM sleep. RGE increased total sleep and NREM sleep. The total percentage of wakefulness was only decreased on the 9th day, and the number of sleep-wake cycles was reduced after the repeated administration of RGE. Thus, the repeated administration of RGE increased NREM sleep in rats. The ${\alpha}$-wave activities in the cortical electroencephalograms were increased in sleep architecture by RGE. Moreover, the levels of both ${\alpha}$- and ${\beta}$-subunits of the ${\gamma}$-aminobutyric acid $(GABA)_A$ receptor were reduced in the hypothalamus of the RGE-treated groups. The level of glutamic acid decarboxylase was over-expressed in the hypothalamus. These results demonstrate that RGE increases NREM sleep via $GABA_A$ergic systems.

Korea Red Ginseng Alters Electroencephalogram Spectra of Sleep-Wake Stage in Rats

  • Ma, Yuan;Eun, Jae-Soon;Cheong, Jae-Hoon;Rhee, Dong-Kwon;Hong, Jin-Tae;Oh, Ki-Wan
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.220-225
    • /
    • 2008
  • The present investigation was performed to evaluate the homeostatic regulation of sleep architecture by the ethanol extract of Korea red ginseng (KRG), since the available data were often controversial. In addition, it was also interested in whether the sleep-wake stages were differently affected by low and high doses of KRG. Each adult Wistar male rat was implanted with a transmitter for recording EEG and activity via telemetry. After one week of surgery, polygraphic signs of undisturbed sleep-wake activities were recorded for 12 h (between 9:00 am and 9:00 pm) after KRG administration. KRG (10 and 100 mg/kg) increased non-rapid eye movement (NREM) sleep as well as total sleep. The total percentages of wakefulness were decreased comparably. KRG (10 mg/kg) decreased the power density of the ${\delta}-wave$ (0.75-4.5 Hz) and increased ${\alpha}-wave$ (8.0-13.0 Hz) in the NREM and rapid eye movement (REM) sleep. KRG also decreased ${\delta}-wave$ power density in wake time. However, KRG (100 mg/kg) increased ${\delta}-wave$ and decreased ${\theta}-wave$ (5.0-9.0 Hz) power density in wake time, while showed little effect on the power density in NREM and REM sleep. In conclusion, low and high doses of KRG increase spontaneous sleep and NREM sleep and differently regulate the EEG spectra in REM and NREM sleep.

Methanol Extract of Longanae Arillus Regulates Sleep Architecture and EEG Power Spectra in Restraint-Stressed Rats

  • Ma, Yuan;Eun, Jae-Soon;Lee, Kwang-Seung;Lee, Eun-Sil;Kim, Chung-Soo;Hwang, Bang-Yeon;Oh, Ki-Wan
    • Natural Product Sciences
    • /
    • v.15 no.4
    • /
    • pp.213-221
    • /
    • 2009
  • Longanae Arillus (the rind of fruits of Dimocarpus longan) has been consumed for the treatment of insomnia and anxiety in Asia. To provide further scientific basis to traditional uses of this fruit on insomnia, we evaluated the effects of methanol extract of Longanae Arillus (MELA) on the alteration of sleep architecture and electroencephalogram (EEG) power spectra in acutely and chronically restraint-stressed rats. Following postsurgical recovery, Polygraphic signs of sleep-wake activities were recorded for 24 h after MELA administration in rats. Rats in the acute stress and chronic stress were administered with MELA for 10 days. On the $8^{th},\;9^{th}\;and\;10^{th}$ day of MELA administration, the rats were stressed for 3 h once per day. On the $10^{th}$ day and 1 h after MELA administration, the rats were stressed once for 22 h in the chronic stress group. Acute and chronic stress induced alternations in cortex EEG recordings during non-rapid eye movement (NREM), rapid eye movement (REM) sleep and wakefulness. MELA shortened the total and REM sleep and increased the wakefulness in night time recording without changing daytime recordings. Chronic stress increased wakefulness and REM sleep, decreased total and NREM sleep in the daytime recording, and increased REM and decreased NREM sleep without changing total sleep and wakefulness in night time recording. These findings suggest that MELA ameliorated the alterations in REM and NREM sleep of acutely and chronically stressed rats via modulation of cortical ${\alpha}-$, ${\theta}-$ and ${\delta}-$ wave activity.

Rapid Eye Movement-Related Obstructive Sleep Apnea: A Study on the Pathogenesis through Clinical and Polysomnographic Features

  • Jang, Ji Hee;Chung, Jin Woo
    • Journal of Oral Medicine and Pain
    • /
    • v.41 no.4
    • /
    • pp.180-187
    • /
    • 2016
  • Purpose: The aims of this study were to evaluate the differences of clinical and polysomnographic features between rapid eye movement (REM)-related obstructive sleep apnea (OSA) and not-REM-related OSA, and to suggest the pathogenesis according to the REM dependency of OSA. Methods: One hundred ninety consecutive patients diagnosed with OSA were evaluated clinical features and performed full night polysomnography. The patients were divided into REM-related (REM apnea-hypopnea index [AHI] at least two times higher than their non-REM AHI) and not-REM-related (a REM AHI less than two times higher than their non-REM AHI) OSA groups and evaluated the differences in age, body mass index (BMI), neck circumference, Ep-worth Sleepiness Scale score, and parameters of polysomnography. Results: REM-related patients were younger and showed higher sleep efficacy, low percentage of light sleep stage (stage 1 sleep), and low rate of positional OSA. Age was significantly associated with REM dependency of OSA and REM AHI were significant correlated with BMI, neck circumference, percentage of sleep in supine position, and percentage time of snoring. Conclusions: Our results showed that REM-related OSA patients showed less severe polysomnographic parameters than not-REM-related patients. However, significant risk factors were differed depending on the REM dependency and OSA severity, and the clinical features correlated with REM AHI and non-REM AHI were also showed differently. We suggest that the occurrence of OSA according to the REM dependency can be based on different mechanisms.

REM-Related Sleep-Disordered Breathing (REM 수면 관련 수면호흡장애)

  • Shin, Chol;Lee, Hyun-Joo
    • Sleep Medicine and Psychophysiology
    • /
    • v.11 no.1
    • /
    • pp.10-16
    • /
    • 2004
  • Sleep is associated with definite changes in respiratory function in normal human beings. During sleep, there is loss of voluntary control of breathing and a decrease in the usual ventilatory response to both low oxygen and high carbon dioxide levels. Especially, rapid eye movement (REM) sleep is a distinct neurophysiological state associated with significant changes in breathing pattern and ventilatory control as compared with both wakefulness and non-rapid eye movement (NREM) sleep. REM sleep is characterized by erratic, shallow breathing with irregularities both in amplitude and frequency owing to marked reduction in intercostal and upper airway muscle activity. These blunted ventilatory responses during sleep are clinically important. They permit marked hypoxemia that occurs during REM sleep in patients with lung or chest wall disease. In addition, sleep-disordered breathing (SDB) is more frequent and longer and hypoventilation is more pronounced during REM sleep. Although apneic episodes are most frequent and severe during REM sleep, most adults spend less than 20 to 25% of total sleep time in REM sleep. It is, therefore, possible for patients to have frequent apneas and hypopneas during REM sleep and still have a normal apnea-hypopnea index if the event-rich REM periods are diluted by event-poor periods of NREM sleep. In this review, we address respiratory physiology according to sleep stage, and the clinical implications of SDB and hypoventilation aggravated during REM sleep.

  • PDF

Anti-Stress Effects of Ginsenoside Rg3-Standardized Ginseng Extract in Restraint Stressed Animals

  • Kim, Chung-Soo;Jo, Young-Jun;Park, Se-Ho;Kim, Hae-Jung;Han, Jin-Yi;Hong, Jin-Tae;Cheong, Jae-Hoon;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.18 no.2
    • /
    • pp.219-225
    • /
    • 2010
  • We tested whether ginsenosides $Rg_3$-standardized ginseng extract (RGE) has anti-stress effects in restraint-stressed animals. RGE increased time spent in the open arms and open arm entries in the elevated plus-maze test. In addition, RGE blocked the reduction of center zone distance and stereotypes behaviors in the open-field test. RGE also increased head dips in stressed mice, indicating anxiolytic-like effects. Stress decreased movement distance and duration, burrowing, and rearing frequency but increased face washing and grooming. RGE significantly reversed burrowing and rearing activity in stressed mice. In addition, we measured sleep architecture in restraint stressed rats using EEG recorder. Stress increased rapid eye movement (REM) sleep, but total sleep and non-rapid eye movement (NREM) sleep were not changed. RGE did not affect sleep architecture in stressed rats. These behavioral experiments suggest that RGE has anti-stress effects in restraint-stressed animal models.

Isolation of a sleep-promoting compound from Polygonatum sibiricum rhizome

  • Jo, Kyungae;Kim, Hoon;Choi, Hyeon-Son;Lee, Seung-Su;Bang, Myun-Ho;Suh, Hyung Joo
    • Food Science and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1833-1842
    • /
    • 2018
  • The aim of this study was to identify sleep-promoting substance from Polygonatum sibiricum rhizome extract (PSE) with the regulation of sleep architecture. PSE showed a decrease in sleep latency time and an increase in the sleeping time. In the electroencephalography analysis of rats, PSE (150 mg/kg) showed an increase of non-rapid eye movement by 38% and a decrease of rapid eye movement by 31% compared to the control. This sleep-promoting activity was found to be involved in the $GABA_A$-BDZ receptor. The chemical structure of the pure compound was determined by the $^1H$ and $^{13}C$ nuclear magnetic resonance spectroscopy and gas chromatography mass spectrometry analysis; active compound was glyceryl-1-monolinoleate. The commercial standard glyceryl-1-monolinoleate showed a similar inhibitory concentration on [$^3H$]-flumazenil binding to $GABA_A$-BDZ receptors with final active fraction of PSE. The results indicate that glyceryl-1-monolinoleate is a major active compound responsible for the PSE-derived sleep promotion.

Sinomenine, an Alkaloid Derived from Sinomenium acutum Potentiates Pentobarbital-Induced Sleep Behaviors and Non-Rapid Eye Movement (NREM) Sleep in Rodents

  • Yoo, Jae Hyeon;Ha, Tae-Woo;Hong, Jin Tae;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.586-592
    • /
    • 2017
  • Sinomenium acutum has been long used in the preparations of traditional medicine in Japan, China and Korea for the treatment of various disorders including rheumatism, fever, pulmonary diseases and mood disorders. Recently, it was reported that Sinomenium acutum, has sedative and anxiolytic effects mediated by GABA-ergic systems. These experiments were performed to investigate whether sinomenine (SIN), an alkaloid derived from Sinomenium acutum enhances pentobarbital-induced sleep via ${\gamma}$-aminobutyric acid (GABA)-ergic systems, and modulates sleep architecture in mice. Oral administration of SIN (40 mg/kg) markedly reduced spontaneous locomotor activity, similar to diazepam (a benzodiazepine agonist) in mice. SIN shortened sleep latency, and increased total sleep time in a dose-dependent manner when co-administrated with pentobarbital (42 mg/kg, i.p.). SIN also increased the number of sleeping mice and total sleep time by concomitant administration with the sub-hypnotic dosage of pentobarbital (28 mg/kg, i.p.). SIN reduced the number of sleep-wake cycles, and increased total sleep time and non-rapid eye movement (NREM) sleep. In addition, SIN also increased chloride influx in the primary cultured hypothalamic neuronal cells. Furthermore, protein overexpression of glutamic acid decarboxylase ($GAD_{65/67}$) and $GABA_A$ receptor subunits by western blot were found, being activated by SIN. In conclusion, SIN augments pentobarbital-induced sleeping behaviors through $GABA_A$-ergic systems, and increased NREM sleep. It could be a candidate for the treatment of insomnia.

Control of Ventilation during Sleep (수면 중 호흡의 조절)

  • Kim, Woo-Sung
    • Sleep Medicine and Psychophysiology
    • /
    • v.6 no.1
    • /
    • pp.19-25
    • /
    • 1999
  • Sleep alters both breathing pattern and the ventilatory responses to external stimuli. These changes during sleep permit the development or aggravation of sleep-related hypoxemia in patients with respiratory disease and contribute to the pathogenesis of apneas in patients with the sleep apnea syndrome. Fundamental effects of sleep on the ventilatory control system are 1) removal of wakefulness input to the upper airway leading to the increase in upper airway resistance, 2) loss of wakefulness drive to the respiratory pump, 3) compromise of protective respiratory reflexes, and 4) additional sleep-induced compromise of ventilatory control initiated by reduced functional residual capacity on supine position assumed in sleep, decreased $CO_2$ production during sleep, and increased cerebral blood flow in especially rapid eye movement(REM) sleep. These effects resulted in periodic breathing during unsteady non-rapid eye movement(NREM) sleep even in normal subjects, regular but low ventilation during steady NREM sleep, and irregular breathing during REM sleep. Sleep-induced breathing instabilities are divided due primarily to transient increase in upper airway resistance and those that involve overshoots and undershoots in neural feedback mechanisms regulating the timing and/or amplitude of respiratory output. Following ventilatory overshoots, breathing stability will be maintained if excitatory short-term potentiation is the prevailing influence. On the other hand, apnea and hypopnea will occur if inhibitory mechanisms dominate following the ventilatory overshoot. These inhibitory mechanisms include 1) hypocapnia, 2) inhibitory effect from lung stretch, 3) baroreceptor stimulation, 4) upper airway mechanoreceptor reflexes, 5) central depression by hypoxia, and 6) central system inertia. While the respiratory control system functions well during wakefulness, the control of breathing is commonly disrupted during sleep. These changes in respiratory control resulting in breathing instability during sleep are related with the pathophysiologic mechanisms of obstructive and/or central apnea, and have the therapeutic implications for nocturnal hypoventilation in patients with chronic obstructive pulmonary disease or alveolar hypoventilation syndrome.

  • PDF