• Title/Summary/Keyword: Non-rainfall

Search Result 610, Processing Time 0.025 seconds

Application of a large-scale ensemble climate simulation database for estimating the extreme rainfall (극한강우량 산정을 위한 대규모 기후 앙상블 모의자료의 적용)

  • Kim, Youngkyu;Son, Minwoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.3
    • /
    • pp.177-189
    • /
    • 2022
  • The purpose of this study is to apply the d4PDF (Data for Policy Decision Making for Future Change) constructed from a large-scale ensemble climate simulation to estimate the probable rainfall with low frequency and high intensity. In addition, this study analyzes the uncertainty caused by the application of the frequency analysis by comparing the probable rainfall estimated using the d4PDF with that estimated using the observed data and frequency analysis at Geunsam, Imsil, Jeonju, and Jangsu stations. The d4PDF data consists of a total of 50 ensembles, and one ensemble provides climate and weather data for 60 years such as rainfall and temperature. Thus, it was possible to collect 3,000 annual maximum daily rainfall for each station. By using these characteristics, this study does not apply the frequency analysis for estimating the probability rainfall, and we estimated the probability rainfall with a return period of 10 to 1000 years by distributing 3,000 rainfall by the magnitude based on a non-parametric approach. Then, the estimated probability rainfall using d4PDF was compared with those estimated using the Gumbel or GEV distribution and the observed rainfall, and the deviation between two probability rainfall was estimated. As a result, this deviation increased as the difference between the return period and the observation period increased. Meanwhile, the d4PDF reasonably suggested the probability rainfall with a low frequency and high intensity by minimizing the uncertainty occurred by applying the frequency analysis and the observed data with the short data period.

The Assessment of Future Flood Vulnerability for Seoul Region (서울 지역의 미래 홍수취약도 평가)

  • Sung, Jang Hyun;Baek, Hee-Jeong;Kang, Hyun-Suk;Kim, Young-Oh
    • Journal of Wetlands Research
    • /
    • v.14 no.3
    • /
    • pp.341-352
    • /
    • 2012
  • The purpose of this study is to statistically project future probable rainfall and to quantitatively assess a future flood vulnerability using flood vulnerability model. To project probable rainfall under non-stationarity conditions, the parameters of General Extreme Value (GEV) distribution were estimated using the 1 yr data added to the initial 30 yr base series. We can also fit a linear regression model between time and location parameters after comparing the linear relationships between time and location, scale, and shape parameters, the probable rainfall in 2030 yr was calculated using the location parameters obtained from linear regression equation. The flood vulnerability in 2030 yr was assessed inputted the probable rainfall into flood vulnerability assessment model suggested by Jang and Kim (2009). As the result of analysis, when a 100 yr rainfall frequency occurs in 2030 yr, it was projected that vulnerability will be increased by spatial average 5 % relative to present.

Influence of Rainfall During the Ripening Stage on Pre-Harvest Sprouting, Seed Quality, and Longevity of Rice (Oryza sativa L.)

  • Baek, Jung-Sun;Chung, Nam-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.4
    • /
    • pp.406-412
    • /
    • 2014
  • The influence of rainfall during the ripening stage on pre-harvest sprouting, seed viability, and seed quality was investigated in two Korean rice cultivars, Shindongjin and Hopum. When the rainfall was artificially treated in a greenhouse, HP started to pre-harvest sprouting at three days of rainfall treatment (DRT), but Shindongjin did not show pre-harvest sprouting at 40 DAH treatment and just 0.3~0.8% at 50 DAH, which was much lower than 15.3~25.8% of Hopum in the same treatment. After harvest, the seed germination of Hopum decreased about 10~25% compared to non-treated seeds, but that of Shindongjin decreased much little rate than that of Hopum. The seed longevity tested by accelerated aging decreased with prolonged rainfall period in both cultivars, but the varietal difference was clear; Shindongjin could withstand longer accelerated aging than Hopum. Shindongjin maintained its germination (>50%) ability after 15 days of accelerated aging regardless of the rainfall treatment period and time, but Hopum dropped below 50% germination ability after only 5 days of accelerated aging. In conclusion, rainfall during the ripening stage induced not only pre-harvest sprouting, but also reduced seed quality and longevity during storage, which varied between two cultivars.

Characteristics of Non-point Pollutant Discharge from Upper Watershed of Seomjin Dam during Rainy Season (섬진강댐 상류 유역의 강우시 비점오염물질 유출 특성)

  • Kwak, Dong-Heui;Yoo, Seung-Joon;Kim, Ji-Hoon;Lim, Ik-Hyun;Kwon, Ji-Young;Chung, Paul-Gene
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.39-48
    • /
    • 2008
  • This study was carried out to investigate the characteristics of the pollutant discharge from non-point source and to estimate the unit loads of the pollutant discharge from the upper watershed of Seomjin Dam during rainy season. The upper watershed of Seomjin Dam is located in the middle of Jeonbuk province is formed two tributaries mainly. A sub-branch stream of those tributaries is Imsil stream of which flow rate is about 13% of the main stream of Seomjin reservoir normally. On the basis of measurement result in this study, the water quality of Imsil stream was fluctuated highly and the quantity of measured pollutant discharge was higher than the value calculated with the proportion of flow rate during dry season. On the contrary, during rainy season the mean values of flow rate and water quality were higher than the quartile according to the statistical analysis. That means rainfall can influence strongly on the water quality of the upper watershed of Seomjin reservoir. Among the several criteria of water quality, SS discharge was most sensitive to the flow rate variation of stream, which was fluctuated in proportion of rainfall, basically. It was evaluated the event mean concentration (EMC) of non-point source pollutants depending on rainfall events as well. Though the pollutant discharge unit of Imsil stream was lower than the main stream of Seomjin reservoir, the EMC value of Imsil stream was higher than the main stream of Seomjin reservoir.

Characteristics of Biochemical Oxygen Demand Export from Paddy Fields during Storm and Non-storm Period and Evaluation of Unit Load (강우시와 비강우시 BOD 유출 특성 조사 및 원단위 평가)

  • Choi, Dongho;Cho, Sohyun;Hwang, Taehee;Kim, Youngsuk;Jung, Jaewoon;Choi, Woojung;Park, Hyunkyu;Yoon, Kwangsik
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.531-537
    • /
    • 2017
  • The biologic Oxygen Demand (BOD) is a reliable and generally accepted indicator of water pollution by organic pollutants. Accordingly, estimation of BOD export from paddies carries important implications fwith regard to water management in rural areas. In this study, hydrology and BOD concentration were monitored during the period 2008 through 2012, in an effort to understand the characteristics of BOD export from paddy fields. The findings demonstrated that BOD load by rainfall above 50 mm. occupied about 50 % of total load, whereas the load by less than ten mm. rainfall occupied about 29 % of the total load during periods of stormy activity. It therefore seems that it could be possible to reduce the BOD load up to 29 % during storm periods, when drainage control conducted for rainfall less than ten mm.(an amount which is relatively easy to manage). The documented mean loads of storm and non-storm were $17.1kg\;ha^{-1}\;yr^{-1}$ and $11.2kg\;ha^{-1}\;yr^{-1}$, respectively. The BOD load during the significant rainfall period was similar to the renewed unit load by NIER (2014). However, there were substantial differences between unit load and actual load when the non-storm load was incorporated into the BOD load estimation from paddy fields. In view of the foregoing, it is felt that, the non-storm load needs to be further considered and managed for the successful implementation of Total Maximum Daily Load (TMDL) program.

Non-stationary Rainfall Frequency Analysis Based on Residual Analysis (잔차시계열 분석을 통한 비정상성 강우빈도해석)

  • Jang, Sun-Woo;Seo, Lynn;Kim, Tae-Woong;Ahn, Jae-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.449-457
    • /
    • 2011
  • Recently, increasing heavy rainfalls due to climate change and/or variability result in hydro-climatic disasters being accelerated. To cope with the extreme rainfall events in the future, hydrologic frequency analysis is usually used to estimate design rainfalls in a design target year. The rainfall data series applied to the hydrologic frequency analysis is assumed to be stationary. However, recent observations indicate that the data series might not preserve the statistical properties of rainfall in the future. This study incorporated the residual analysis and the hydrologic frequency analysis to estimate design rainfalls in a design target year considering the non-stationarity of rainfall. The residual time series were generated using a linear regression line constructed from the observations. After finding the proper probability density function for the residuals, considering the increasing or decreasing trend, rainfalls quantiles were estimated corresponding to specific design return periods in a design target year. The results from applying the method to 14 gauging stations indicate that the proposed method provides appropriate design rainfalls and reduces the prediction errors compared with the conventional rainfall frequency analysis which assumes that the rainfall data are stationary.

Hydrological Evaluation of Rainwater Harvesting: 1. Hydrological Analysis (빗물이용의 수문학적 평가: 1. 수문해석)

  • Yoo, Chulsang;Kim, Kyoungjun;Yun, Zuhwan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.221-229
    • /
    • 2008
  • This study revised a model for hydrologically analyzing rainwater harvesting facilities considering their rainfall-runoff properties and the data available. This model has only a few parameters, which can be estimated with rather poor measurements available. The model has a non-linear module for rainfall loss, and the remaining rainfall excess (effective rainfall) is assumed to be inflow to the storage tank. This model has been applied for the rainwater harvesting facilities in Seoul National University, Korea Institute of Construction Technology, and the Daejon World Cup Stadium. As a result, the runoff coefficients estimated were about 0.9 for the building roof as a rainwater collecting surface and about 0.18 for the playground. This result is coincident with that for designing the rainwater harvesting facilities to show the accuracy of model and the simulation results.

Establishment of Early Warning System of Steep Slope Failure Using Real-time Rainfall Data Analysis (실시간 강우자료분석을 활용한 산사태 경보시스템 연구)

  • Kim, Sung-Wook;Choi, Eun-Kyoung;Park, Dug-Keun;Park, Jung-Hoon;Son, Sung-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.253-262
    • /
    • 2010
  • In this study, localized heavy rainfall occurred during the collapse of steep slopes adjacent to the construction site and to ensure the safety of residents to build an early warning system was performed. Forecast/Alert range was estimated based on vulnerability landslide map and past disaster history. And established a critical line in consideration of the characteristics of local rainfall and operating a snake line, the study calculated causing and non-causing points. Also, be measured in real-time analysis of rainfall data in conjunction with the system before the steep slope failure occurred forecast/Alert System is presented.

  • PDF

The effect of Combined Sewer Overflows on river's water quality

  • Bae, Hun Kyun
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2020
  • The effect of Combined Sewer Overflow on the river system was investigated throughout three preliminary field tests and three main ones. As a result of the study, Combined Sewer Overflow did not affect water qualities on the main stream since the concentration of the main stream did not significantly changed during rainfall events although the water quality of tributaries has rapidly deteriorated due to the influence of the Combined Sewer Overflow during rainfall events. The main cause of the result is that the flow rate of the tributaries is considerably lower than that of the main stream, so that the tributaries with deteriorated water quality during rainfall events did not significantly affect the quality of the actual main stream. Therefore, the water quality of the Kumho River is more affected by the wastewater treatment facilities that discharges water continuously to the main stream than pollutants from non-point pollution sources during rainfall events. As a result, managements for discharges from wastewater treatment facilities should be strengthened in order to improve the water quality of the river.

Derivation of IDF Curve by the Simulation of Hourly Precipitation using Nonhomogeneous Markov Chain Model (비동질성 Markov 모형에 의한 시간강수량 모의발생을 이용한 IDF 곡선의 유도)

  • Moon, Young-Il;Choi, Byung-Kyu;Oh, Tae-Suk
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.501-504
    • /
    • 2008
  • A non-homogeneous markov model which is able to simulate hourly rainfall series is developed for estimating reliable hydrological variables. The proposed approach is applied to simulate hourly rainfall series in Korea. The simulated rainfall is used to estimate the design rainfall and compared to observations in terms of reproducing underlying distributions of the data to assure model's validation. The model shows that the simulated rainfall series reproduce a similar statistical attribute with observations, and expecially maximum value is gradually increased as number of simulation increase.

  • PDF