• 제목/요약/키워드: Non-rainfall

검색결과 608건 처리시간 0.034초

Characteristics of Andong Dam Inflow during Non-rainfall Season

  • Park, Gey-Hwan;Park, Ki-Bum;Chang, In-Soo
    • 한국환경과학회지
    • /
    • 제27권10호
    • /
    • pp.845-851
    • /
    • 2018
  • In this study, the runoff characteristics of the non-rainfall period were examined using daily rainfall data from 1977 to 2017 and the data of runoff into the dam. Results showed that, the mean runoff decreases with longer non-rainfall periods in the Andong dam basin. The correlation coefficient between non-rainfall days and average runoff reaches 0.85. The results of the analysis of the runoff characteristics during the non-rainfall period, based on the preceding rainfall of Andong dam are as follows. The runoff characteristics of the entire non-rainfall period, shows that, for a rainfall of 1.0 mm or less, the runoff height was larger than the rainfall size and the base runoff larger. The correlation between the antecedent rainfall and runoff height was reached as high as 0.9864 in the 30 ~ 50 mm interval of the antecedent rainfall period, and this is the interval where the linearity of rainfall and runoff was at its maximum in the Andong dam basin. The correlation between the antecedent rainfall and the runoff height reached 0.92 for rainfalls of 100.0 mm. However, for rainfalls of 100.0 mm greater, the correlation between the antecedent rainfall and runoff height during the rainfall period was 0.64, which is relatively small. In this study, we investigated the runoff characteristics of the rainfall period in the Andong dam watershed. As a result, it was confirmed that the mean runoff decreased with rainfall duration. The linearity was found to be weak for rainfall events greater than 100.0 mm. The results of this study can be used as data for water balance analysis and for formulating a water supply plan to establish water resource management of Andong dam.

Analysis of the Relationship between the Number of Forest Fires and Non-Rainfall Days during the 30-year in South Korea

  • Songhee, Han;Heemun, Chae
    • Journal of Forest and Environmental Science
    • /
    • 제38권4호
    • /
    • pp.219-228
    • /
    • 2022
  • This study examined the relationship between the number of forest fires and days with no rainfall based on the national forest fire statistics data of the Korea Forest Service and meteorological data from the Open MET Data Portal of the Korea Meteorological Administration (KMA; data.kma.go.kr) for the last 30 years (1991-2021). As for the trend in precipitation amount and non-rainfall days, the rainfall and the days with rainfall decreased in 2010 compared to those in 1990s. In terms of the number of forest fires that occurred in February-May accounted for 75% of the total number of forest fires, followed by 29% in April and 25% in March. In 2000s, the total number of forest fires was 5,226, indicating the highest forest fire activity. To analyze the relationship between regional distribution of non-rainfall periods (days) and number of forest fires, the non-rainfall period was categorized into five groups (0 days, 1-10 days, 11-20 days, 21-30 days, and 31 days or longer). During the spring fire danger season, the number of forest fires was the largest when the non-rainfall period was 11-20 days; during the autumn fire precaution period, the number of forest fires was the largest when the non-rainfall period was 1-10 days, 11-20 days, and 21-30 days, showing differences in the duration of forest fire occurrence by region. The 30-year trend indicated that large forest fires occurred only between February and May, and in terms of the relationship with the non-rainfall period groups, large fires occurred when the non-rainfall period was 1-10 days. This signifies that in spring season, the dry period continued throughout the country, indicating that even a short duration of consecutive non-rainfall days poses a high risk of large forest fires.

Monitoring of Non-point Source Pollutants Generated by a Flower Farm

  • Choi, Byoungwoo;Kang, Meea
    • 지질공학
    • /
    • 제24권4호
    • /
    • pp.463-471
    • /
    • 2014
  • This paper considers the effect of rainfall on non-point source (NPS) pollutant loads. The impact of runoff on the occurrence of NPS pollutants was found to be influenced by rainfall amount, rainfall intensity, and the number of antecedent dry days (ADD), both independently and in combination. The close correlation ($R^2$ = 0.9920) between rainfall and runoff amounts was demonstrated at the study site (a flower farm) over the period between January 2011 and December 2013. The relationships among pollutant levels, runoff, and rainfall was not satisfactory results except for the Biochemical Oxygen Demand ($BOD_5$). The correlation coefficients between $BOD_5$, and both runoff and rainfall, were greater than 0.92. However, the relationships of other pollutants, such as Suspended Solid (SS), Chemical Oxygen Demand ($COD_{Mn}$), Total Nitrogen (TN), and Total Phosphorus (TP), with runoff and rainfall had correlation coefficients of less than 0.70. The roles of rainfall was different from rainfall categories on the occurrence of runoff. Instantaneous rainfall intensity was a principle factor on the occurrence of runoff following light rainfall events (total ${\leq}30mm$). For rainfall of intermediate intensity (total precipitation 31-50 mm), the combined effect of both average rainfall intensity and ADD was found to influence runoff generation. We conclude that the control of NPS pollutants with the reflection of the climate change that makes the remarkable effect of amounts and forms on the rainfall and runoff.

비점오염원에서 발생하는 오염물질 모니터링 - 고구마·벚나무경작지의 강우유출수를 대상으로 - (Monitoring Pollutants Occurred by Non Point Sources - Rainfall Runoff from Cultivated Lands for a Sweet Potato and a Cherry Tree -)

  • 최병우;강미아
    • 대한환경공학회지
    • /
    • 제36권1호
    • /
    • pp.13-19
    • /
    • 2014
  • 청정한 물환경에 대한 기대가 높아지는 시대에서, 관리가 쉽지 않은 비점오염원에서 발생하는 오염부하량을 산정하여 합리적인 국토관리를 도모할 수 있는 기초자료를 제시하였다. 연구는 2개소의 밭경작지를 대상으로 하였으며 고구마와 벚나무를 재배하는 비점오염원으로 각각 3년 동안에 걸쳐 강우사상을 모니터링 하였다. 오염부하량에 영향을 미치는 가장 중요한 인자는 강우량으로 50 < rainfall (mm)의 강우사상에서는 100% 강우유출량이 발생하여 오염물질을 발생하였다. 그러나 30 < rainfall (mm) ${\leq}50^a$와 10 < rainfall (mm) ${\leq}30^b$에서는 강우유출수에 의한 오염부하에는 작물의 재배방법과 토양의 특성 등이 결정인자로 작용되어, 작물성장이 현저한 벚나무경작지에서 강우유출수 발생빈도는 a : 60%, b : 5%로 고구마경작지에서의 강우유출수 발생빈도보다 낮았으며, 이로 인해 오염부하량도 적었다. 반면, 고구마경작지에서의 강우유출수 발생빈도는 a : 80%, b : 15%로 나타났다.

도암호 유역 송천에서의 강우유출수 분석을 통한 EMC와 초기세척비율 (MFFn) 산정 (Determination of EMC and MFFn Rainfall Runoff in Songcheon, Doam Lake Watershed)

  • 권혁준;김종건;임경재;김동진;홍은미
    • 한국농공학회논문집
    • /
    • 제62권4호
    • /
    • pp.13-22
    • /
    • 2020
  • The Doam Lake watershed has a significant impact on the downstream water system due to nutrients and sediment outflow during rainfall caused by steep slopes, soil losses, and fertilization. These non-point sources are unclear in the discharge area and are affected by land use patterns, soil characteristics, and topographical features of the watershed. Therefore, this study conducted rainfall monitoring from July to October 2019 in Songcheon upstream of the Doam Lake watershed, one of the non-point pollution source management areas. Then, after analyzing rainfall runoff, Event Mean Concentration (EMC) and Mass First Flush ratio (MFFn) were calculated to compare and analyze the characteristics of rainfall and the non-point pollutant discharge. As a result of the analysis, it showed various non-point pollutant emission characteristics for each rainfall event. In addition, the concentration of EMC and the MFFn were affected by the average rainfall intensity and the maximum rainfall intensity, and were not significantly affected by the number of antecedent drying days. In the future, it is expected that effective non-point source reduction measures and management measures according to rainfall intensity through continuous monitoring and analysis will be needed.

산업단지 비점오염원의 유출특성(I): C산업단지의 초기강우에 따른 유출수 분석을 중심으로 (The Runoff Characteristics of Non-point Pollution Sources in Industrial Complex(I): Focusing on the analysis of runoff water according to the initial rainfall of the C Industrial Complex)

  • 우제석;신현곤
    • 유기물자원화
    • /
    • 제30권1호
    • /
    • pp.23-32
    • /
    • 2022
  • 본 연구는 강우시 산업단지에서 발생하는 비점오염원 유출 특성을 평가하여 비점오염원 부하량 및 원단위 산정을 위한 기초자료로 활용하기 위하여 C 산업단지에 대하여 강우유출수 수질모니터링을 수행하였다. IETD 분석결과, 강우지속시간 약 21시간, 강우량 26.44mm인 27시간일 때 비점오염원 모의를 위한 대표 강우 사상으로 선정되었으며, 유량 및 수질조사 모니터링 결과, 1차 강우시 강수량 12.2mm, 강우지속기간 12hr, 선행 건기일 수 3일이었으며, 2차 강우시 강수량 22.1mm, 강우지속시간 12hr, 선행 건기일 수는 7일이었다.

영농기와 비영농기에 강우에 의해 논으로 유입되는 질소공급량 분석 (The Analysis of Nitrogen Supply Amount in Paddy Fields by Rainfall During Cropping and Non-Cropping Period)

  • 최동호;최순군;허승오;홍성창;김민경
    • 한국농공학회논문집
    • /
    • 제60권3호
    • /
    • pp.107-112
    • /
    • 2018
  • In this study, we conducted to analyze and quantify the amount of nitrogen supply into the rice paddies from the rainfall during cropping and non-crop periods. Rainfall monitoring conducted 85 times from June 2015 to December 2017. Nitrogen supply of cropping season ranged from 5.37 to 7.70 kg/ha, while non-cropping season were supplied from 3.97 to 4.42 kg/ha. The supply of T-N in the crop period was more than 60% of the total supply. And as a result of analyzing the correlation between the characteristics of rainfall and the supply amount, nitrogen concentrations in rainfall were decreased with increasing rainfall, but the supply amount was increased. Therefore, efforts should be made to increase the rainfall utilization and to increase the nitrogen supply of crops by increasing rainfall storage through drainage management.

기후변화 시나리오를 활용한 인천지역 강우에 의한 작업불능일 변화 연구 (A Study on the Change of Non-Working Days Based on the Rainfall in Incheon Area Using the Climate Change Scenarios)

  • 장준영;이찬식
    • 한국건설관리학회논문집
    • /
    • 제19권1호
    • /
    • pp.103-113
    • /
    • 2018
  • 건설공사는 주로 옥외에서 이루어지기 때문에 토공사, 철근콘크리트 공사 등은 강우에 의한 작업불능일 수가 다수 발생한다. 특히, 지구 온난화에 의한 강우량 변화는 공기산정을 더욱 어렵게 하고 있다. 따라서 공정계획 수립 시 해당지역의 강우량 변화를 파악하고 작업불능일 수를 산정해야 한다. 이 연구에서는 인천지역의 1960년부터 2016년까지의 기상'관측'자료와, 2018년부터 2074년까지의 기상'예측'자료인 RCP 4.5를 활용하여 강우 변화시점을 파악하였고, 그 시점 전 후로 연 강우, 계절별 강우로 인한 작업불능일 수의 변화를 분석하였다. 그 결과 1972년, 1988년, 2013년, 2038년, 2050년, 2069년에 강우량이 뚜렷하게 변화한 것으로 나타났으며, 특히 2013년, 2038년, 2069년 기준으로 강우로 인한 작업불능일 수의 변화 폭이 큰 것으로 파악 되었다.

도시, 농촌 및 임야유역으로부터 배출되는 비점원 오염부하의 특성비교 (Comparison of Discharge Characteristics of NPS Pollutant Loads from Urban, Agricultural and Forestry Watersheds)

  • 여중현;김건하
    • 한국물환경학회지
    • /
    • 제21권2호
    • /
    • pp.184-189
    • /
    • 2005
  • Impacts of non-point source pollution on water quality are well known. In this paper, effects of land use, precipitation characteristics, discharge characteristics on non-point source pollutant loadings at urban, agricultural and forestry watersheds were discussed. Rainfall runoffs from fifteen rainfall events were sampled and analysed at two urban watersheds, one rural watershed, and one forestry watershed. EMCs (Event Mean Concentration) were calculated based on monitored flow rates and concentrations. Statistical analysis carried out with runoff loadings and affecting variables indicated that runoff loadings are weakly correlated with the rainfall intensity and the dry days before rainfall events while showed no correlations with rainfall depth nor runoff quantity. By comparing EMCs between study watersheds on log-normal cumulative probability scale, EMCs ranking were in the descending order of urban watershed>agricultural watershed>forestry watershed for SS, TCOD, TN, and TP.

호우분리기법을 적용한 비정상성 빈도해석의 미래확률강우량 산정 및 평가 (Estimation and Assessment of Future Design Rainfall from Non-stationary Rainfall Frequency Analysis using Separation Method)

  • 손찬영;이보람;최지혁;문영일
    • 한국수자원학회논문집
    • /
    • 제48권6호
    • /
    • pp.451-461
    • /
    • 2015
  • 본 연구에서는 태풍의 경로 및 규모를 이용한 호우분리기법을 통해 한반도에 유발된 강우를 집중호우와 태풍강우로 분류하고, 지역별 강우특성 및 경향성 분석을 수행하였다. 또한 호우분리를 통한 비정상성 빈도해석을 수행하여 미래확률강우량을 산정하였으며, 이에 대한 정량적인 비교 및 평가를 수행하였다. 분석결과, 전기간 자료, 태풍강우 및 집중호우의 증가 및 감소율이 각각 상이하며, 증가 및 감소경향이 서로 상반되는 지점도 나타났다. 또한 호우분리를 통한 비정상성 빈도해석을 수행한 결과, 비교적 합리적인 미래확률강우량이 산정됨을 확인할 수 있었으며, 전기간 자료를 이용한 미래확률강우량과 비교한 결과 한반도 남부 및 동부지역에서 상대적으로 큰 차이가 나타났다. 호우분리기법을 적용한 비정상성 빈도해석 결과는 태풍 및 집중호우의 지역적인 변화특성을 잘 반영하는 것으로 나타나 수공구조물 설계 및 미래 기후변화와 관련된 치수대책 및 정책수립에 활용도가 높을 것으로 판단된다.