• Title/Summary/Keyword: Non-premixed Flame

Search Result 134, Processing Time 0.024 seconds

Flame Length Scaling in a Non-premixed Turbulent Diluted Hydrogen Jet with Coaxial Air (희석된 동축공기 수소 난류확산화염의 화염 길이 스케일링)

  • Hwang, Jeong-Jae;Oh, Jeong-Seog;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.242-245
    • /
    • 2009
  • The effect of fuel composition on flame length was studied in a non-premixed turbulent diluted hydrogen jet with coaxial air. The observed flame length was expressed as a function of the ratio of coaxial air to fuel jet velocity and compared with a theoretical prediction based on the velocity ratio. Four cases of fuel mixed by volume were determined. In the present study, we derived a scaling correlation for predicting the flame length in a simple jet with coaxial air using the effective jet diameter in the near-field concept. The experimental results showed that visible flame length had a good relation with the theoretical prediction. The scaling analysis is also valid for diluted hydrogen jet flames with varied fuel composition.

  • PDF

Effect of Flame Interaction on the NO Emission (다수 상호작용 화염의 공해배출물 특성)

  • Kim Jin Hyun;Lee Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.730-736
    • /
    • 2005
  • It has been reported that the interacting multiple jet flames of propane fuel are not extinguished even at the choking velocity at the nozzle exit if eight small nozzles are arranged along the imaginary circle of $40{\sim}72$ times the diameter of single nozzle. In this research, experiments were conducted to know the NO and CO emission characteristics of the interacting flames. Measurements along the centerline of the flame revealed that decrease in CO concentration was followed by the NO decrease and $O_2$ increase. It was found that interacting flame emitted less NO than that of similar area single jet flame. Also, NO emission of partially premixed interacting flame was decreased up to $17\%$ of that of non-premixed multiple jet flame. Though the mechanism of the NO reduction was not clear from this experiment, it's been shown that partially premixed multiple jet flames could be used to achieve clean and highly stable combustion.

A Study on the Mixing Capacity of Lifted Flame by the Nozzle Hole-tone of High Frequency in Non-premixed Jet Flames (비예혼합 제트화염에서 고주파수의 노즐 구멍음에 의한 부상화염 혼합성능에 관한 연구)

  • Jo, Joon-Ik;Lee, Kee-Man
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.35-40
    • /
    • 2011
  • An experimental investigation of the characteristic of non-premixed lifted flames with nozzle hole-tone of high-frequency has been performed. Before the fuel was supplied to nozzle, the fuel was supplied through a burner cavity which was located under the nozzle. The fuel passed through the excitation cavity under the influence of the high-frequency affects the lifted flame characteristics. The measurements were performed in flow range that occurs lifted flame and blow out. When the high-frequency is generated from burner cavity, the lifted length became shorter, and noise reduced comparing to unexcitation case. Additionally, operating flow range was increased and diameter of flame base became smaller with high-frequency effect. Through this experiments, it's ascertained that the high-frequency excitation can be adopted with effective method for flame stability and noise reduction.

Flame Stabilization and Control in Gas Turbine Combustor (가스터어빈 연소기의 화염 안정화와 제어)

  • Choi, G.M.
    • Journal of ILASS-Korea
    • /
    • v.8 no.4
    • /
    • pp.24-30
    • /
    • 2003
  • This paper presents the characteristics of lifted height and flame length from non-premixed jet flames in highly preheated air to investigate the detail combustion mechanism in the gas turbine or HCCI engine, etc. Special attention was paid to the effect of preheated air temperature, oxygen concentration and fuel injection flow rate on flame length and lifted hight. By using highly preheated air, stable flames were formed even in low oxygen concentration condition. The lifted height increased with decreasing preheated air temperature, where the flame length showed opposed phenomena. The flamelet model, which is thought to have very thin flamelet, is difficult to applicable to the present flame conditions which is formed In low oxygen concentration in highly preheated air.

  • PDF

Basic Experimental Study on Characteristics of Fuel Pyrolysis and Lift-off of Non-premixed Jet-flame (연료의 열분해특성과 비예혼합 제트화염의 부상특성에 관한 기초실험)

  • Jeon, Minkyu;Lee, Min Jung;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.119-121
    • /
    • 2014
  • In general, high temperature combustion technique has been adopted as an efficient one. However, hydrocarbon-based fuel can be decomposed under high temperature, and it can affect the stabilization mechanism of edge flame. In this research, basic experimental study was conducted to identify the effect of fuel pyrolysis on the lift-off flame stabilization by changing the temperature of the plug flow reactor. Schmidt number of the gas fuel can be changed with temperature variation due to the fuel pyrolysis. Eventually, this study will help to establish and clarify the stabilization mechanism of lift-off edge flame.

  • PDF

Behavior of Non-premixed Flame Front in an Acoustically-Driven Dump Combustor (가진된 덤프 연소기 내에서의 비예혼합 화염 거동)

  • Park, Jung-Kyu;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.142-151
    • /
    • 2000
  • Dump combustor is a combustor having a dump plane to make coherent structures. A non-premixed flame dump combustor of simple geometry was constructed. We conducted basic experiments such as frequency response on the combustor to confirm the characteristics of the phenomena as a typical dump combustion and unsteady combustion. Furthermore we visualized the flame front behavior by CH chemiluminescence and high speed motion analysis. In spite of the lack of another data such as velocity, species concentration and temperature, the results showed not only the periodic motion of flame front but the ignition process of vortex ring flame. Also we could check out Rayleigh criterion by combining the visualization data with the pressure data.

  • PDF

Effect of Oxygen Enriched Air on the Combustion Characteristics in a Coaxial Non-Premixed Jet ( I ) - Lift-off and Flame Stability - (산소부화공기가 동축 비예혼합 제트의 연소특성에 미치는 영향 (I) - 화염의 부상과 안정성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.160-166
    • /
    • 2004
  • Combustion using oxygen enriched air is known as a technology which can increase flame stability as well as thermal efficiency due to improving the burning rate. Lift-off, blowout limit and flame length were examined as a function of jet velocity, coflow velocity and OEC(Oxygen Enriched Concentration). Blowout limit of the flame below OEC 25% decreased with increase of coflow velocity, but the limit above OEC 25% increased inversely. Lift-off height decreased with increase of OEC. In particular, lift-off hardly occurred in the condition above OEC 40%. Flame length of the flames above OEC 40% was increased until the blowout occurred. Great flame stability was obtained since lift-off and blowout limit significantly increased with increase of OEC.

Lift-off and Flame Stability of a Coaxial Non-Premixed Jet Using Oxygen Enriched Air (산소부화공기를 이용한 동축 제트화염의 부상과 연소 안정성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.326-331
    • /
    • 2003
  • Combustion using oxygen enriched air is known as a technology which can increase flame stability as well as thermal efficiency due to improvement of the burning rate. Lift-off, blowout limit and flame length were examined as a function of jet velocity, coflow velocity and OEC(Oxygen Enriched Concentration). Blowout limit of the flame below OEC 25% decreased with coflow velocity, but the limit above OEC 25% increased inversely. Lift-off height decreased with increase of OEC. Especially lift-off hardly occurred in the condition above OEC 40%. Flame length of the flames above OEC 40% was increased until the blowout occurred. Flame stability became improved since lift-off and blowout limit increased much with increase of OEC.

  • PDF

A Study on Mensurement of NO Concentrations in Laminar Non-premixed H2/N2 Flame Using LIF (레이저 유도 형광법(LIF)을 이용한 층류 비예혼합 수소/질소 화염에서의 NO 농도 측정에 관한 연구)

  • Jin, Seong Ho;Kim, Sung Wook;Park, Kyoung Suk;Kim, Gyung Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.279-286
    • /
    • 2002
  • In this study, quantitative nitric oxide concentration distributions are investigated in the laminar non-premixed $H_2/N_2$ flames by laser-induced fluorescence (LIF). The measurements are taken in flames for different $N_2$ dilution ratios varying from 20~80%, and fuel flow rate is fixed as Islpm. The NO A-X (0,0) vibrational band around 226 nm is excited using a XeCl excimer-pumped dye laser. We applied same excitation line used in $CH_4$, premixed flame. Overall, NO concentration was rapidly decreased with Na addition and we could not measure the concentration any longer for $N_2$ dilution above 80%.

Influence of Fuel concentration gradient on the Extinction Behavior in Buoyancy minimized Counterflow Diffusion Flame (부력을 최소화한 대향류 확산화염 소화거동에서 연료농도구배의 영향)

  • Park, Jin Wook;Park, Jeong;Yun, Jin-Han;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.379-381
    • /
    • 2014
  • Influence of fuel concentration gradient was investigated near flame extinction limit in buoyancy-suppressed non-premixed counterflow flame with triple co-flow burner. The use of He curtain flow produced a microgravity level of $10^{-2}-10^{-3}g$ in He-diluted non-premixed counter triple co-flow flame experiments. Flame stability map was presented based on flame extinction and oscillation near extinction limit. The stability map via critical diluent mole fraction with global strain rate was represented by varying outer and inner He-diluted mole fractions. The flame extinction modes could be classified into five: an extinction through the shrinkage of the outmost edge flame forward the flame center with and without self-excitation, respectively ((I) and (II)), an extinction via the rapid expansion of a flame hole while the outmost edge flame is stationary (III), both the outermost and the center edge flames oscillate, and then a donut shaped flame is formed or the flame is entirely extinguished (IV), a shrinkage of the outermost edge flame without self-excitation followed by shrinking or sustain the inner flame (V).

  • PDF