희석된 동축공기 수소 난류확산화염의 화염 길이 스케일링

황정재* · 오정석* · 윤영빈**

Flame Length Scaling in a Non-premixed Turbulent Diluted Hydrogen Jet with Coaxial Air

Jeongjae Hwang* · Jeongseog Oh* · Youngbin Yoon**

ABSTRACT

The effect of fuel composition on flame length was studied in a non-premixed turbulent diluted hydrogen jet with coaxial air. The observed flame length was expressed as a function of the ratio of coaxial air to fuel jet velocity and compared with a theoretical prediction based on the velocity ratio. Four cases of fuel mixed by volume were determined. In the present study, we derived a scaling correlation for predicting the flame length in a simple jet with coaxial air using the effective jet diameter in the near-field concept. The experimental results showed that visible flame length had a good relation with the theoretical prediction. The scaling analysis is also valid for diluted hydrogen jet flames with varied fuel composition.

초 록

회석된 동축공기 수소 난류확산화염에서 연료의 구성이 화염 길이에 미치는 영향에 대한 연구를 수 행하였다. 화염의 길이는 동축공기와 연료 제트의 속도비의 함수로 표현하였고, 이론적 예측과 비교하 였다. 네 조건의 연료 구성에 대해 연구를 수행하였다. 동축공기 제트 화염의 길이 예측을 위해 near-field concept에서의 유효 직경을 이용한 스케일링 관계식을 유도하였다. 실험 결과 가시 화염의 길이는 이론적 예측과 크게 일치하였다. 여러 연료 조건에서의 희석된 수소 제트의 화염에서도 스케일 링 분석은 유효하였다.

Key Words: Diluted Gas(희석 가스), Flame Length Scaling(화염 길이 스케일링), Non-premixed Hydrogen Jet(수소 제트 확산화염), Near-field Concept, Effective Diameter(유효 직경)

1. 서 론

배기 배출물 규제와 지구온난화 문제에 대응 하기 위해 통상적인 화력발전에 적용될 IGCC(Integrated Gasification Combined Cycle) 시스템이 연구되고 있다. IGCC에 사용되는 가스 터빈 엔진에서는 합성가스가 연료로 사용된다.

^{*} 서울대학교 기계항공공학부 대학원

^{**} 서울대학교 기계항공공학부

연락저자, E-mail: ybyoon@snu.ac.kr

합성가스는 석탄 가스화 공정을 통해서 얻어지 고 수소, 이산화탄소, 질소, 메탄으로 구성된다 [1]. 이러한 합성가스의 연소 특성은 수소나 탄 화수소계열 가스의 연소 특성과는 차이가 있다.

실질적으로 연소기를 설계 할 때 연소기 내부 구성은 완전한 연소가 일어나도록 설계되어야 하기 때문에 연소시 난류 확산화염의 형태는 아 주 중요하다. 난류 제트 화염의 길이에 대한 연 구는 많은 연구자들에 의해 행해져 왔다.

Hawthorne 등[2]은 momentum-dominated regime 부근에서의 화염 길이 변화를 연구하였 고 화염의 길이를 예측하기 위해 제트 혼합 과 정의 스케일링을 수행하였다.

가운데의 연료 제트가 주변의 동축공기로 둘 러싸인 구성으로 되어있는 난류 확산화염의 화 염 길이에 동축공기가 미치는 영향은 많이 연구 되어왔다[3-6]. Chen과 Driscoll[3]은 Dahm과 Mayman의 스케일링 분석[7]을 기초로 하여 동 축 공기를 가지는 난류 확산화염에서의 화염 길 이의 이론적 예측을 제안하였다.

본 연구에서는 합성 가스 구성의 변화가 화염 길이 스케일링에 미치는 효과를 연구하였다. 합 성 가스를 재현하기 위해 다양한 비율의 희석 가스를 사용하였다: H₂, N₂, CO₂, 그리고 CH₄ 이 연구의 목적은 연료의 구성비에 따른 화염 길이의 특성을 파악하고 동축공기와 연료 제트 비(u_A/u_F)의 증가에 따른 무차원 화염 길이 (L/d_F)의 실험적 곡선을 대변할 수 있는 합당한 스케일링 식을 제안하는 것이다.

2. 실험 방법

동축공기와 연료공급라인이 연결된 직육면체 의 랩-스케일 연소기(200x200x800 mm)를 사용하 였다. 연료 제트의 노즐은 내경(d_F)이 3.65 mm 이고 끝 두께(t_F)가 0.21 mm이며 연소기 입구의 중앙에 위치하였다. 연료 제트 노즐은 동축공기 노즐로 둘러싸여있다. 동축공기 노즐은 내경(d_A) 이 14.1 mm이고 끝 두께(t_A)는 0.2 mm이다. 실 험장치의 개략도가 Fig. 1에 나타나있다.

Fig. 1. Schematic of burner geometry; $d_F = 3.65$ mm and $d_A = 14.1$ mm.

화염 형상을 확인하기위해 직접 화염 사진을 이 용하였다. 가시화염의 순간 이미지는 상용 macro 렌즈(EF 24-70 mm f/2.8L USM Canon Co., Tokyo, Japan)가 장착된 디지털 SLR 카메 라(20D, Canon co., Tokyo, Japan)로 얻었다. Raw data는 문턱값 제한을 두어 2진수로 디지 털화하였다. 반응 영역을 구별하기 위해 문턱값 을 각 이미지의 최대강도의 20%로 두었다. 화염 길이(L)는 노즐 출구로부터 가장 먼 가시 화염의 팁까지의 거리로 정의하였다. 가시 화염의 길이 는 100장의 순간 이미지를 평균화여 계산하였다. 합성 가스를 재구성하기 위해 수소, 이산화탄 소, 질소, 메탄이 연료로 사용되었다. 4 조건의 연료 구성을 설정하였다: 100% H2(case 1), 80% H₂/20% N₂(case 2), 80% H₂/20% CO₂(case 3), and 80%H₂/20% CH₄(case 4). 각 조건의 연료 구성비와 실험 유동 조건이 Table 1에 잘 나타 나 있다.

Table 1. Test condition of diluted hydrogen flames with coaxial air

Fuel Composition	
Case 1	100% H ₂
Case 2	80% H ₂ /20% N ₂
Case 3	80% H ₂ /20% CO ₂
Case 4	80% H ₂ /20% CH ₄
Flow Condition	
$u_F (m/s)$	86 ~ 309
Re _F	2853 ~ 10253
Fr_{F}	$0.21 \times 10^6 \sim 2.67 \times 10^6$
$u_A \ (m/s)$	7 ~ 14
u_{∞} (m/s)	less than 0.1

3.1 가시 화염 형태

실험 조건을 결정하기 위해 희석된 수소 제트 화염의 화염 안정화 특성을 확인하였다. 이것은 Fig. 2에 나타나 있다. 안정화 곡선은 부착화염 영역, 부상화염영역 그리고 날림화염영역의 세 영역으로 나누어진다. Fig. 2에서 볼 수 있듯이 희석 기체의 몰 분율이 증가함에 따라 날림화염 영역은 넓어지고 부착화염영역의 크기는 감소한 다. 이러한 경향은 화염 밑단에서의 화염전파속 도와 혼합기의 구배와 관련이 있을 것으로 생각 되었다. 본 실험에서는 부상화염에서의 부분 예 혼합 효과를 배재하기 위해 부착화염영역에서의 화염 길이를 측정하였다.

가시화염의 순간 이미지에서의 길이의 평균값 을 가시화염의 길이로 정의하였다. 일반적으로 가시화염의 길이는 온도나 농도의 측정에 기초 한 화염길이보다 큰 것으로 알려져 있다. Kim 등[6]의 연구에 따르면 화염의 밝기 강도는 연료 제트의 속도에 관계없이 x/L=0.7에서 최대화 된 다. 이 위치는 온도나 농도의 측정을 기본으로 한 화염 길이[8, 9]와 일치한다.

Figure 3은 u_F=86 m/s과 u_A=7 m/s 조건에서 1~4 케이스의 가시 화염을 보여준다. 화염의 길 이와 색깔은 반응물의 몰분율과 반응물의 구성 에 따라 바뀐다.

난류 확산화염에서 화염의 길이는 모멘텀이나 부력의 효과, 이론공연비, 연료와 공기의 밀도 비, 연료 제트의 초기 직경 등에 의해 영향을 받 는다. Kim 등[5]의 연구 결과는 큰 연료 제트의

Fig. 2. The stability map of all 4 cases

Fig. 3 Visible flame appearance in case $1 \sim 4$

직경을 제외하고는 대부분의 화염이 화염의 팁 까지 모멘텀-지배적이었다는 것을 보여주었다. 더욱이, 동축공기 속도의 증가는 부력의 효과를 무시할 수 있도록 하였다. 본 연구에서는 당량비 가 일정하기 때문에 연료 제트의 직경과 연료와 공기 밀도의 비만이 화염 길이 스케일링의 주 역할을 하는 것으로 생각된다.

3.2 이론적 접근

화염 길이 스케일링은 혼합분율에 대한 스케 일링이라 할 수 있다. 그것은 유체의 질량 유량 의 보존과 far-field에서의 자기상사로부터 추론 될 수 있다. [3]에 따르면 화염 길이는 (1+f_s)와 d_{eff}에 비례함을 유도할 수 있고 동축공기의 질량 유량이 상대적으로 크게 작으므로 무시하면 무 차원 화염 길이(L/d_F)는 다음과 같이 유도된다:

$$\frac{L}{d_F} = \frac{c \cdot (1+f_s) \cdot (\rho_F/\rho_A)^{1/2}}{\left[1 + \frac{\rho_A \cdot u_A^2 \cdot \left\{d_A^2 - (d_F+t_F)^2\right\}}{\rho_F \cdot u_F^2 \cdot d_F^2}\right]^{1/2}}$$
(1)

이 화염 길이 스케일링 식은 Chen과 Driscoll [3]이 제안하였다. 동축공기는 이론공연비가 되 기에 필요한 공기 유입을 줄여주므로 화염의 길 이를 줄이는 역할을 한다[3, 7].

3.3 화염 길이 스케일링

가시 화염 측정 결과 케이스 1과 4가 비슷한 경향을 보이고 케이스 2와 3이 비슷한 경향을 보인다. 그런데 비활성 기체의 혼합기의 화염의 길이가 더 짧은 경향을 보이는데 이는 연료 내

Fig. 5. Comparision of results; (a) case1, (b) case2, (c) case3, and (d) case4

의 반응물 비율 차이로 인한 것으로 생각된다.

본 연구에서는 화염 길이 예측을 위해 Chen 과 Driscoll[3]이 제안한 이론적 예측과 실험값을 비교하였다. 이론적 값은 낮은 u_A/u_F에서는 잘 맞았지만 높은 u_A/u_F에서는 편차가 있었다. 유 효 직경 파라미터를 도입하였다.

유효 직경은 공기와 연료의 두 노즐을 한 노 즐로 가정하는 개념이다. near-field에서 유효 직 경을 도입하면 무차원 화염길이는 다음과 같다:

$$\frac{L}{d_F} = c \bullet (1+f_s) \left[\frac{1 + \left(\frac{u_A}{u_F}\right)^2 \frac{\left\{d_A^2 - (d_F + t_F)^2\right\}}{d_F^2}}{1 + \frac{\rho_A}{\rho_F} \left(\frac{u_A}{u_F}\right)^2 \frac{\left\{d_A^2 - (d_F + t_F)^2\right\}}{d_F^2}}\right]^{1/2}$$
(2)

Figure 5에는 동축공기와 연료의 속도비에 대 한 무차원 화염 길이가 실험값, 이론적 예측[3], 그리고 near-field 개념에서 새로 정의된 식에 의 한 값이 나타나있다. 대부분의 경우 높은 u_A/u_F 에서까지도 본 연구에서 새롭게 정의된 식이 실 험 결과와 크게 일치한다.

4. 결 론

본 실험을 통해 다음의 결론을 얻었다:

 동축공기와 연료의 속도비가 줄어들 수 록 무차원 화염 길이는 줄어든다.

 높은 u_A/u_F에서 이론과 실험 결과의 편차 를 줄이기 위해 유효직경 개념을 도입하였고, near-field concept에서의 새로이 정의되는 식을 제안하였다.

3. 본 연구에서 제안된 식은 질소, 이산화탄소, 메탄 등이 수소와 혼합된 각각의 다른 화염에서 도 실험 결과를 잘 예측하였다.

후 기

본 연구는 항공우주신기술연구소 및 기초전력 연구원(한국서부발전 연구개발 과제)의 지원으로 수행되었으며, 이에 감사드립니다.

참고문 헌

- D.E. Giles, S. Som, S.K. Aggarwal, Fuel 85 (2006) 1729-1742.
- W.R. Hawthorne, D.S. Weddell, H.C. Hottel, Proc. Combust. Inst. 3 (1948) 266.
- R.H. Chen, J.F. Driscoll, Proc. Combust. Inst. 23 (1990) 281-288.
- J. F. Driscoll, R.H. Chen, Y. Yoon, Combust. Flame 88 (1992) 37-49.
- S.H. Kim, M. Kim, Y. Yoon, I.S. Jeung, Proc. Combust. Inst. 29 (2002) 1951-1956.
- M. Kim, Y. Yoon, Proc. Combust. Inst. 31 (2007) 1609-1616.
- W.J.A. Dahm, A.G. Mayman, AIAA J. 28 (7) (1990) 1157-1162.
- R.S. Barlow, C.D. Carter, Combust. Flame 97 (1994) 261-280.
- R.H. Chen, Combust. Sci. and Tech. 110-111 (1995) 443-450.