• Title/Summary/Keyword: Non-porous

Search Result 443, Processing Time 0.039 seconds

Augmentation of Pyriform Margin Using Porous High-Density Polyethylene Sheet In Unilateral Cleft Lip Nasal Deformity (일측성 구순열비변형에서 다공성 폴리에틸렌 판을 이용한 상악골이상구증대술)

  • Han, Ki Hwan;Kim, Jin Han;Choi, Tae Hyun;Kim, Jun Hyung;Son, Dae Gu
    • Archives of Plastic Surgery
    • /
    • v.35 no.4
    • /
    • pp.431-438
    • /
    • 2008
  • Purpose: The common deformity after the correction of unilateral cleft lip nasal deformity is nasal asymmetry, and it is caused by the hypoplasia of the pyriform aperture. To correct this, many procedures have been applied, but still many problems are present. Authors performed the inlay and onlay insertion of porous high density polyethylene sheet(1 mm thickness $Medpor{(R)}$ sheet) in the hypoplastic pyriform margin of cleft side and obtained satisfactory results. Methods: 11 cases were performed and the mean follow up period was 15.1 months. Their mean age was 23.6 years. Under general anesthesia, bilateral pyriform margin was exposed. $Medpor{(R)}$ sheets in "match stick" like shaped were inlay inserted, and kidney shaped were onlay inserted fixating with two 6 mm titanium screws. After the surgery, the results was evaluated by photogrammetric analysis. On the basal view, the distance from the subalare and labiale superius' to the transverse baseline connecting the both cheilions was measured from the cleft side and the non-cleft side. Then, the postoperative symmetry was assessed by obtaining the cleft side against the non-cleft side as proportion index, defined as lateral and medial upper lip contour index. Results: There were 2 infections. The cause was because the inserted implant was too long and thus protruded to the base of nasal cavity. The lateral upper lip contour index was from 95.49 to 103.27, and medial upper lip contour index was from 90.92 to 100.49, it was statistically increased, and thus the symmetry was improved. However clinically mild depression remained at nostril floor. Conclusion: Authors performed porous high density polyethylene sheet inlay and onlay insertion for the hypoplasia of the pyriform margin in unilateral cleft lip nasal deformity. It was found that depressed pyriform margin and upper lip were corrected effectively except for the nostril floor, for which an additional soft tissue augmentation would be necessary. The inlay insertion has risk of protrusion, thus the guideline of the use of artificial prosthesis should be observed strictly.

Synthesis of Ceria Nanosphere by Ultrasonic Spray Pyrolysis

  • Kim, Jong-Young;Kim, Ung-Soo;Cho, Woo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.249-252
    • /
    • 2009
  • Nanocrystalline ceria particles were prepared by using the ultrasonic spray pyrolysis method. The prepared ceria particles were found to be spherical and non-agglomerated by the SEM and TEM analyses. It was found that carrier gas influences the size and morphology. It was found that the air stream of carrier gas results in porous agglomerated structure of ceria abrasives, whereas solid nano-sphere can be obtained in a more oxidizing atmosphere.

EXISTENCE AND NON-UNIQUENESS OF SOLUTION FOR A MIXED CONVECTION FLOW THROUGH A POROUS MEDIUM

  • Hammouch, Zakia;Guedda, Mohamed
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.631-642
    • /
    • 2013
  • In this paper we reconsider the problem of steady mixed convection boundary-layer flow over a vertical flat plate studied in [6],[7] and [13]. Under favorable assumptions, we prove existence of multiple similarity solutions, we study also their asymptotic behavior. Numerical solutions are carried out using a shooting integration scheme.

Pervaporation Separation of Binary Organic-Aqueous Liquid Mixtures

  • Rhim, Ji-Won;Huang, Robert Y.M.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1991.10a
    • /
    • pp.1-3
    • /
    • 1991
  • A novel membrane separation process for the separation of liquid mixture is Pervaporation. The term, 'pervaporation', is a combination of permeation and evaporation, and was first introduced by kober[1] in 1917. In this technique, the liquid mixture in feed is in contact with one side of a dense non-porous membrane and after diffusing through the membrane is removed from the downstream side in the vapor phase, but is usually condensed afterwards to obtain a permeate in liquid from.

  • PDF

Experiments on Thermal Conductivity of Concrete (콘크리트의 열전도율에 관한 실험적 연구)

  • 김진근;전상은;양은익;김국한;조명석;방기성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.946-951
    • /
    • 1998
  • In order to calculate the thermal stresses of massive concrete structures in non-steady state conditions the thermal properties of the materials have to be well known. Structural materials such as concrete, rock and soil are heterogeneous, damp and porous so that measurements of their thermal properties by conventional methods would result in large errors. In this study, thermal conductivity was measured by the device, QTM-D3 which is usually used in Japan. Variables are chosen as age, water content, temperature, aggregate content, S/A ratio and type of cementitious materials. Finally a model for thermal conductivity was proposed.

  • PDF

Hall Effect on Unsteady Hartmann Flow with Heat Transfer Under Exponential Decaying Pressure Gradient

  • Attia Hazem A.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1302-1308
    • /
    • 2006
  • The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer taking the Hall effect into consideration. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to an exponential decaying pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the ion slip and the uniform suction and injection on both the velocity and temperature distributions is examined.

UNSTEADY HARTMANN FLOW WITH HEAT TRANSFER IN THE PRESENCE OF UNIFORM SUCTION AND INJECTION

  • Attia Hazem A.
    • The Pure and Applied Mathematics
    • /
    • v.13 no.1 s.31
    • /
    • pp.1-10
    • /
    • 2006
  • The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to a constant pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the magnetic field and the uniform suction and injection on both the velocity and temperature distributions is examined.

  • PDF

Fabrication and Characterization of Porous Carbon Electrode for Electrosorption (전기흡착용 다공성 탄소전극의 제조 및 특성 분석)

  • Park, Nam-Soo;Choi, Jae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.409-414
    • /
    • 2008
  • Porous carbon electrode for electrosorption was prepared by a wet phase inversion method. Carbon slurry that was a mixture of activated carbon powder(ACP) and PVdF solution was cast directly upon a graphite sheet by means of a casting knife. Porous carbon electrodes were fabricated by immersing the cast film in pure water as a non solvent. Physical and electrochemical properties of carbon electrodes prepared with various ACP contents(50.0, 75.0, 83.3, 87.5, 90.0 wt %). From the SEM images we can verify that the electrode was porous. The average pore sizes determined for the electrodes fabricated with various ACP contents ranged from 72.7 to 86.4 nm and the size decreased as the ACP content increased. The electrochemical properties were characterized by cyclic voltammetry(CV) method. All of the voltammograms showed typical behavior of an electric double layer charging/discharging on the carbon surface. The capacitance increased with the ACP content and the values ranged from 2.18 F/cm$^2$ for 50 wt% ACP to 4.77 F/cm$^2$ for 90 wt% ACP.

Effect of Forming Process and Particle Size on Properties of Porous Silicon Carbide Ceramic Candle Filters (성형공정(成形工程)과 원료입도(原料粒度)가 다공성(多孔性) 탄화규소(炭火硅素) 세라믹 캔들 필터 특성(特性)에 미치는 영향(影響))

  • Han, In-Sub;Seo, Doo-Won;Hong, Ki-Seog;Woo, Sang-Kuk
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.31-43
    • /
    • 2010
  • To fabricate porous SiC candle filter for filtration facility of the IGCC system, the candle type filter preforms were fabricated by ramming and vacuum extrusion process. A commercially available ${\alpha}$-SiC powders with various particle size were used as starting raw materials, and $44\;{\mu}m$ mullite, $CaCO_3$ powder were used as non-clay based inorganic sintering additive. The candle typed preforms by ramming process and vacuum extrusion were sintered at $1400^{\circ}C$ for 2h in air atmosphere. The effect of forming method and particle size of filter matrix on porosity, density, strength (flexural and compressive strength) and microstructure of the sintered porous SiC candle tilters were investigated. The sintered porous SiC filters which were fabricated by ramming process have more higher density and strength than extruded filter in same particle size of the matrix, and its maximum density and 3-point bending strength were $2.00\;g/cm^3$ and 45 MPa, respectively. Also, corrosion test of the sintered candle filter specimens by different forming method was performed at $600^{\circ}C$ for 2400h using IGCC syngas atmosphere for estimation of long-term reliability of the candle filter matrix.

Hydrophilic Treatment of Porous Substrates for Pore-Filling Membranes (세공충진막을 위한 다공성 지지체 친수화 처리)

  • Dahye Jeong;Minyoung Lee;Jong-Hyeok Park;Yeri Park;Jin-Soo Park
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.4
    • /
    • pp.71-79
    • /
    • 2023
  • In this study, we employed anionic, cationic, and nonionic surfactants for the hydrophilization of porous substrates used in the fabrication of pore-filling membranes. We investigated the extent of hydrophilization based on the type of surfactant, its concentration, and immersion time. Furthermore, we used the hydrophilized substrates to produce pore-filling anion exchange membranes and compared their ion conductivity to determine the optimal hydrophilization conditions. For the ionic surfactants used in this study, we observed that hydrophilization progressed rapidly from the beginning of immersion when the applied concentration was 3.0 wt%, compared to lower concentrations (0.05, 0.5, and 1.0 wt%). In contrast, for the relatively larger molecular weight non-ionic surfactants, smooth hydrophilization was not observed. There was no apparent correlation between the degree of hydrophilization and the ion conductivity of the anion exchange membrane. This discrepancy suggests that an excessive hydrophilization process during the treatment of porous substrates leads to excessive adsorption of the surfactant on the sparse surfaces of the porous substrate, resulting in a significant reduction in porosity and subsequently decreasing the content of polymer electrolyte capable of ion exchange, thereby greatly increasing the electrical resistance of the membrane.