References
- M. Aiboudi, B.Brighi, On the solutions of a boundary value problem arising in free convection with prescribed heat flux, Archiv Der Mathematik, 93 (2009) 165-174. https://doi.org/10.1007/s00013-009-0023-6
- M. Ali, F. Al-Yousef, Laminar mixed convection boundary-layers induced by a linearly stretching permeable surface, Int. J. Heat Mass Trans., 45 (2002), 4241-4250. https://doi.org/10.1016/S0017-9310(02)00142-4
- E. H. Aly, L. Elliott and D. B. Ingham, Mixed convection boundary-layer flow over a vertical surface embedded in a porous medium, Eur. J. Mech. B, Fluids, 22 (2003), 529-543. https://doi.org/10.1016/S0997-7546(03)00059-1
- O. Aydin and Kaya, Mixed convection of a viscous dissipating fluid about a vertical flat plate, Appl. Math. Model. 31, (2007), 843-853. https://doi.org/10.1016/j.apm.2005.12.015
- H. Brezis, L. A. Peletier and D. Terman, A very singular solution of the heat equation with absorption, Arch. Rat. Mech. Anal. 95, (1986), 185-209.
- B. Brighi and J.D. Hoernel, On the concave and convex solution of mixed convection boundary layer approximation in a porous medium, Appl. Math. Lett. 19 (2006), 69-74. https://doi.org/10.1016/j.aml.2005.02.038
- B. Brighi and J.D. Hoernel, On a general similarity boundary layer equation, Acta Math. Comen. 1 (2008), 9-22.
- P. Cheng and W.J. Minkowycz, Free-convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike, J. Geophys. Res. 82 (1977), 2040-2044. https://doi.org/10.1029/JB082i014p02040
- P. Cheng, Combined free and forced convection flow about inclined surfaces in porous media, Int. J. Heat Mass Trans. 20 (1977), 807-814. https://doi.org/10.1016/0017-9310(77)90110-7
- W. A. Coppel, On a differential equation of boundary layer theory, Phil. Trans. Roy. Soc. London, Ser. A 253 (1960), 101-136. https://doi.org/10.1098/rsta.1960.0019
- V. G. Danilov, V. P. Maslov and K. A. Volosov, Mathematical Modeling of Heat and Mass Transfer Processes, Mathematics and Its Application, Kluwer Academic Publishers 1995.
- V. M. Falkner and S. W. Skan, Solutions of the boundary layer equations, Phil. Mag. 12 (1931), 865-896. https://doi.org/10.1080/14786443109461870
- M. Guedda, Multiple solutions of mixed convection boundary layer approximation in a porous medium, Appl. Math. Lett. 19(2006), 63-68. https://doi.org/10.1016/j.aml.2005.02.037
- Z. Hammouch, Etude mathematique et numerique de quelques problemes issus de la dynamique des fluides, These de Doctorat, Universite de Picardie Jules Verne, France 2006.
- S. P. Hastings, An existence theorem for a class of nonlinear boundary value problems including that of Falkner and Skan., J. Diff. Eqs. 9 (1971), 580-593. https://doi.org/10.1016/0022-0396(71)90025-8
-
S. P. Hastings and W. C. Troy, Oscillating solutions of the Falkner-Skan equation for negative
${\delta}$ ., SIAM J. Math. Anal. 18 (1987), 422-429. https://doi.org/10.1137/0518032 - M. A. Hossain and M. S. Munir, Mixed convection flow from a vertical flat plate with temperature-dependent viscosity., Int J. Therm. Sci. 39 (2000), 173-183. https://doi.org/10.1016/S1290-0729(00)00237-4
- Hussein A. Mohammed, Laminar mixed convection heat transfer in a vertical circular tube under buoyancy-assisted and opposed flows., Energy Conversion and Management. 49 (2008), 2006-2015. https://doi.org/10.1016/j.enconman.2008.02.009
- F. S. Ibrahim, A.M. Elaiw and K.K. Bakr, Influence of viscous dissipation and radiation on unsteady MHD mixed convection flow of micropolar fluids., App. Math. and Inf. Sci. 2 (2008), 143-162.
- A. Ishak, J. H. Merkin, R. Nazar and I. Pop, Mixed convection boundary layer flow over a permeable vertical surface with prescribed wall heat flux., Z. angew. Math. Phys. 59 (2008) 100-123. https://doi.org/10.1007/s00033-006-6082-7
- A. Ishak, J. H. Merkin, R. Nazar and I. Pop, Mixed convection boundary layer flow over a permeable vertical surface with prescribed wall heat flux., Z. angew. Math. Phys. 59 (2008) 100-123. https://doi.org/10.1007/s00033-006-6082-7
- J. H. Merkin, Mixed convection boundary-layer flow on a vertical surface in a saturated porous medium, J.Engrg. Math. 14 1980, 301-313. https://doi.org/10.1007/BF00052913
- J.H. Merkin and I. Pop, Mixed convection along a vertical surface: similarity solutions for uniform flow The existence of self-similar solutions for some laminar boundary layer problems, Fluid Dyn. Res. 30 (2002), 233-250. https://doi.org/10.1016/S0169-5983(02)00042-4
- A. Ishak, J. H. Merkin, R. Nazar and I. Pop, Mixed convection boundary layer flow over a permeable vertical surface with prescribed wall heat flux., Z. angew. Math. Phys. 59 (2008) 100-123. https://doi.org/10.1007/s00033-006-6082-7
- A. Ishak, R. Nazar and I. Pop, Dual solutions in mixed convection term flow near a stagnation point on a vertical surface in a porous medium., Int. J. Heat and Mass Trans. 51 (2008) 1150-1155. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.029
- J. B. McLeod and J. Serrin, The existence of self-similar solutions for some laminar boundary layer problems, Arch. Rat. Mech. Anal. 31 (1968), 288-303.
Cited by
- Flow of non-Newtonian magneto-fluid with gold and alumina nanoparticles through a non-Darcian porous medium vol.27, pp.1, 2019, https://doi.org/10.1186/s42787-019-0017-x
- Analytical Insights into a Generalized Semidiscrete System with Time-Varying Coefficients: Derivation, Exact Solutions, and Nonlinear Soliton Dynamics vol.2020, pp.None, 2013, https://doi.org/10.1155/2020/1543503
- Instability modulation for the (2+1)-dimension paraxial wave equation and its new optical soliton solutions in Kerr media vol.95, pp.3, 2013, https://doi.org/10.1088/1402-4896/ab4a50