DOI QR코드

DOI QR Code

EXISTENCE AND NON-UNIQUENESS OF SOLUTION FOR A MIXED CONVECTION FLOW THROUGH A POROUS MEDIUM

  • Hammouch, Zakia (Department of Mathematics, Moulay Ismail University) ;
  • Guedda, Mohamed (Universite de Picardie Jules Verne, Faculte de Mathematiques et d'Informatique)
  • Received : 2011.06.23
  • Accepted : 2013.03.31
  • Published : 2013.09.30

Abstract

In this paper we reconsider the problem of steady mixed convection boundary-layer flow over a vertical flat plate studied in [6],[7] and [13]. Under favorable assumptions, we prove existence of multiple similarity solutions, we study also their asymptotic behavior. Numerical solutions are carried out using a shooting integration scheme.

Keywords

References

  1. M. Aiboudi, B.Brighi, On the solutions of a boundary value problem arising in free convection with prescribed heat flux, Archiv Der Mathematik, 93 (2009) 165-174. https://doi.org/10.1007/s00013-009-0023-6
  2. M. Ali, F. Al-Yousef, Laminar mixed convection boundary-layers induced by a linearly stretching permeable surface, Int. J. Heat Mass Trans., 45 (2002), 4241-4250. https://doi.org/10.1016/S0017-9310(02)00142-4
  3. E. H. Aly, L. Elliott and D. B. Ingham, Mixed convection boundary-layer flow over a vertical surface embedded in a porous medium, Eur. J. Mech. B, Fluids, 22 (2003), 529-543. https://doi.org/10.1016/S0997-7546(03)00059-1
  4. O. Aydin and Kaya, Mixed convection of a viscous dissipating fluid about a vertical flat plate, Appl. Math. Model. 31, (2007), 843-853. https://doi.org/10.1016/j.apm.2005.12.015
  5. H. Brezis, L. A. Peletier and D. Terman, A very singular solution of the heat equation with absorption, Arch. Rat. Mech. Anal. 95, (1986), 185-209.
  6. B. Brighi and J.D. Hoernel, On the concave and convex solution of mixed convection boundary layer approximation in a porous medium, Appl. Math. Lett. 19 (2006), 69-74. https://doi.org/10.1016/j.aml.2005.02.038
  7. B. Brighi and J.D. Hoernel, On a general similarity boundary layer equation, Acta Math. Comen. 1 (2008), 9-22.
  8. P. Cheng and W.J. Minkowycz, Free-convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike, J. Geophys. Res. 82 (1977), 2040-2044. https://doi.org/10.1029/JB082i014p02040
  9. P. Cheng, Combined free and forced convection flow about inclined surfaces in porous media, Int. J. Heat Mass Trans. 20 (1977), 807-814. https://doi.org/10.1016/0017-9310(77)90110-7
  10. W. A. Coppel, On a differential equation of boundary layer theory, Phil. Trans. Roy. Soc. London, Ser. A 253 (1960), 101-136. https://doi.org/10.1098/rsta.1960.0019
  11. V. G. Danilov, V. P. Maslov and K. A. Volosov, Mathematical Modeling of Heat and Mass Transfer Processes, Mathematics and Its Application, Kluwer Academic Publishers 1995.
  12. V. M. Falkner and S. W. Skan, Solutions of the boundary layer equations, Phil. Mag. 12 (1931), 865-896. https://doi.org/10.1080/14786443109461870
  13. M. Guedda, Multiple solutions of mixed convection boundary layer approximation in a porous medium, Appl. Math. Lett. 19(2006), 63-68. https://doi.org/10.1016/j.aml.2005.02.037
  14. Z. Hammouch, Etude mathematique et numerique de quelques problemes issus de la dynamique des fluides, These de Doctorat, Universite de Picardie Jules Verne, France 2006.
  15. S. P. Hastings, An existence theorem for a class of nonlinear boundary value problems including that of Falkner and Skan., J. Diff. Eqs. 9 (1971), 580-593. https://doi.org/10.1016/0022-0396(71)90025-8
  16. S. P. Hastings and W. C. Troy, Oscillating solutions of the Falkner-Skan equation for negative ${\delta}$., SIAM J. Math. Anal. 18 (1987), 422-429. https://doi.org/10.1137/0518032
  17. M. A. Hossain and M. S. Munir, Mixed convection flow from a vertical flat plate with temperature-dependent viscosity., Int J. Therm. Sci. 39 (2000), 173-183. https://doi.org/10.1016/S1290-0729(00)00237-4
  18. Hussein A. Mohammed, Laminar mixed convection heat transfer in a vertical circular tube under buoyancy-assisted and opposed flows., Energy Conversion and Management. 49 (2008), 2006-2015. https://doi.org/10.1016/j.enconman.2008.02.009
  19. F. S. Ibrahim, A.M. Elaiw and K.K. Bakr, Influence of viscous dissipation and radiation on unsteady MHD mixed convection flow of micropolar fluids., App. Math. and Inf. Sci. 2 (2008), 143-162.
  20. A. Ishak, J. H. Merkin, R. Nazar and I. Pop, Mixed convection boundary layer flow over a permeable vertical surface with prescribed wall heat flux., Z. angew. Math. Phys. 59 (2008) 100-123. https://doi.org/10.1007/s00033-006-6082-7
  21. A. Ishak, J. H. Merkin, R. Nazar and I. Pop, Mixed convection boundary layer flow over a permeable vertical surface with prescribed wall heat flux., Z. angew. Math. Phys. 59 (2008) 100-123. https://doi.org/10.1007/s00033-006-6082-7
  22. J. H. Merkin, Mixed convection boundary-layer flow on a vertical surface in a saturated porous medium, J.Engrg. Math. 14 1980, 301-313. https://doi.org/10.1007/BF00052913
  23. J.H. Merkin and I. Pop, Mixed convection along a vertical surface: similarity solutions for uniform flow The existence of self-similar solutions for some laminar boundary layer problems, Fluid Dyn. Res. 30 (2002), 233-250. https://doi.org/10.1016/S0169-5983(02)00042-4
  24. A. Ishak, J. H. Merkin, R. Nazar and I. Pop, Mixed convection boundary layer flow over a permeable vertical surface with prescribed wall heat flux., Z. angew. Math. Phys. 59 (2008) 100-123. https://doi.org/10.1007/s00033-006-6082-7
  25. A. Ishak, R. Nazar and I. Pop, Dual solutions in mixed convection term flow near a stagnation point on a vertical surface in a porous medium., Int. J. Heat and Mass Trans. 51 (2008) 1150-1155. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.029
  26. J. B. McLeod and J. Serrin, The existence of self-similar solutions for some laminar boundary layer problems, Arch. Rat. Mech. Anal. 31 (1968), 288-303.

Cited by

  1. Flow of non-Newtonian magneto-fluid with gold and alumina nanoparticles through a non-Darcian porous medium vol.27, pp.1, 2019, https://doi.org/10.1186/s42787-019-0017-x
  2. Analytical Insights into a Generalized Semidiscrete System with Time-Varying Coefficients: Derivation, Exact Solutions, and Nonlinear Soliton Dynamics vol.2020, pp.None, 2013, https://doi.org/10.1155/2020/1543503
  3. Instability modulation for the (2+1)-dimension paraxial wave equation and its new optical soliton solutions in Kerr media vol.95, pp.3, 2013, https://doi.org/10.1088/1402-4896/ab4a50