• Title/Summary/Keyword: Non-point Pollutants Source

Search Result 213, Processing Time 0.057 seconds

Characteristics of Road Runoff depending on the Rainfall Intensity (강우강도에 따른 노면유출수의 유출 특성)

  • Kim, Seog-Ku;Kim, Young-Im;Yun, Sang-Leen;Lee, Yong-Jae;Kim, Ree-Ho;Kim, Jong-Oh
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.494-499
    • /
    • 2004
  • Growth in population and urbanization has progressively increased the loadings of pollutants from non-point sources as well as point sources. Therefore, it is necessary to manage both point and non-point sources contaminations for protecting water environment and improving water quality. This study investigated the characteristics of pollutant release over a wide range of rainfall intensities as a requisite to control road runoff that accounts for the largest portion of non-point source contamination in urban areas. Samples of runoff rainwater collected from real road surfaces were analyzed for physicochemical parameters such as pH, suspended solids, and heavy metals. A experimental model road ($30cm{\times}30cm$) was also used to evaluate wash-off properties of pollutants deposited on the surface as functions of time and rainfall intensity. Analysis of runoff samples on rain events showed that the pollutant wash-off patterns for heavy metal and suspended solids were similar. This implies that the particles in rainwater adsorb heavy metals. Experiments using the model road made of impervious asphalt demonstrate a strong first flush phenomenon. At high rainfall intensity, approximately 80% of total pollutants were released within 15 min. The pollutant wash-off rates rapidly increase from 9 mm/hr to 12 mm/hr of rainfall intensity and decrease over 12 mm/hr of rainfall intensity.

The Improvement on the Empirical Formula of Stormwater Captured Ratio for Water Quality Volume Based Non-Point Pollutants Water Quality Control Basins (WQV 기반 비점오염저감시설의 강우유출수 처리비 경험공식의 개선)

  • Choi, Daegyu;Park, Moo Jong;Park, Bae Kyung;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.87-94
    • /
    • 2014
  • According to the technical guideline of water pollutant load management, the rainfall captured ratio which can be estimated by the empirical formula is an important element to estimate reduction loads of non-point pollutants water quality control basin. In this study, the rainfall captured ratio is altered to stormwater captured ratio considering its meaning in the technical guideline of water pollutant load management, and the new empircal formula of stormwater captured ratio is suggested. In order to do this, we calculate stormwater captured ratio by using the hourly rainfall data of seven urban weather stations (Busan, Daegu, Daejeon, Gangreung, Seoul, Gwangju, and Jeju) for 43 years. The regression coefficients of the existed empirical formula cannot reflect the catchment properties at all, because they are fixed values regardless of regions. However the empirical formula of stormwater captured ratio has flexible regression coefficients by runoff coefficient(C), so it is allowed to consider the characteristics of runoff in catchment. It is expected that reduction loads of storage based water quality control basin can be more reasonably estimated than before.

A Study on the Discharge Characteristics of Non-point Pollutant Source in the Agricultural Area of the Kyongan Watershed (경안천 유역 농촌지역의 비점오염원 배출 특성에 관한 연구)

  • Lee, Byung-Soo;Jung, Yong-jun;Park, Moo Jong;Gil, Kyung-Ik
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.169-173
    • /
    • 2008
  • A field monitoring was conducted in order to find out the discharge characteristics of non-point source pollutants in the agricultural area. Event Mean Concentration (EMC) of TSS, $BOD_5$, $COD_{Mn}$, TP, TN was calculated based on the monitoring data of 10 rainfall events at agricultural watersheds. A significant relationship was observed from the correlation between EMCs and rainfall characteristics. The result shows that EMC ranges of 95% confidence intervals were 50.5~203 mg/L for TSS, 0.8~14.2 mg/L for $BOD_5$, 4.2~20.7 mg/L for $COD_{Mn}$, 2.4~4.5 mg/L for TN and 0.2~0.5 mg/L for TP, respectively. The correlation coefficients between TSS and TP and between $BOD_5$ and $COD_{Mn}$ were found to be 0.912 and 0.961. But TN was lower correlated with other EMC factors. It was also found that rainfall characteristics was not correlated with EMCs.

Assessment of Water Quality Characteristics in the Middle and Upper Watershed of the Geumho River Using Multivariate Statistical Analysis and Watershed Environmental Model (다변량통계분석 및 유역환경모델을 이용한 금호강 중·상류 유역의 수질특성평가)

  • Seo, Youngmin;Kwon, Kooho;Choi, Yun Young;Lee, Byung Joon
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.520-530
    • /
    • 2021
  • Multivariate statistical analysis and an environmental hydrological model were applied for investigating the causes of water pollution and providing best management practices for water quality improvement in urban and agricultural watersheds. Principal component analysis (PCA) and cluster analysis (CA) for water quality time series data show that chemical oxygen demand (COD), total organic carbon (TOC), suspended solids (SS) and total phosphorus (T-P) are classified as non-point source pollutants that are highly correlated with river discharge. Total nitrogen (T-N), which has no correlation with river discharge and inverse relationship with water temperature, behaves like a point source with slow and consistent release. Biochemical oxygen demand (BOD) shows intermediate characteristics between point and non-point source pollutants. The results of the PCA and CA for the spatial water quality data indicate that the cluster 1 of the watersheds was characterized as upstream watersheds with good water quality and high proportion of forest. The cluster 3 shows however indicates the most polluted watersheds with substantial discharge of BOD and nutrients from urban sewage, agricultural and industrial activities. The cluster 2 shows intermediate characteristics between the clusters 1 and 3. The results of hydrological simulation program-Fortran (HSPF) model simulation indicated that the seasonal patterns of BOD, T-N and T-P are affected substantially by agricultural and livestock farming activities, untreated wastewater, and environmental flow. The spatial analysis on the model results indicates that the highly-populated watersheds are the prior contributors to the water quality degradation of the river.

Runoff Characteristics of Non-Point Sources on the Stormwater (강우에 의한 도로 비점오염원 유출 특성)

  • Kim, Seog-Ku;Kim, Young-Im;Kang, Sung-Won;Yun, Sang-Leen;Kim, So-Jung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.104-110
    • /
    • 2006
  • Growth in population and urbanization has progressively increased the loadings of pollutants from non-point sources as well as point sources. Accordingly, release of contaminants from non-point sources, released with surface runoff of rainwater, is influenced by atmospheric phenomena, geology, and topography. This makes the control of non-point source difficult. Therefore, this study intends to reveal the characteristics of runoff and particle size distribution to observe the fundamental characteristics of runoff. Experiments were carried out at inner road of research center. Average concentration of runoff ranged from 26.8 to 126.4 mg/L for SS and $COD_{Cr}\;15.3{\sim}117.7mg/L,\;TN\;0.07{\sim}5.16mg/L,\;TP\;0.06{\sim}0.49mg/L$ and heavy metals $0.00{\sim}0.29mg/L$. First flush, indicated wash off of pollutant at first rain, was observed for all types of pollutants. Most pollutants revealed a very close correlation with SS ($R^2=0.93{\sim}0.99$). After analyzing characteristics of particle, particle was finer than that from previously examined data.

Influence of River Discharge Fluctuation and Tributary Mixing on Water Quality of Geum River, Korea (유량변화와 지류유입에 따른 금강의 수질 변화)

  • Shim, Moo Joon;Lee, Soo Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.313-318
    • /
    • 2015
  • To study the influence of changes in river discharge on water quality of the main stem of the Geum River, we investigated variation of inflow load from tributaries with river discharge. We also studied the mixing behavior of pollutants during mixing of waters of the main stem and Gap Stream. For this study, we collected water quality data such as suspended solids (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) representing pre-monsoon, monsoon, and post-monsoon events of 2013 from a website of Water Information System. Based on inflow load, the Gap and Miho streams may be ones of tributaries which may largely influence water quality of main stem in upper river region. The Suksung and Nonsan Streams seemed to further affect water quality downstream. Results of modified EMMA indicated SS and TP may have another source(besides Gap Stream) at pre-monsoon, monsoon, and post-monsoon period. In contrast, TN and organic matter (BOD, COD, TOC) were conservative at pre-monsoon and post-monsoon. However, when river discharge increased, these pollutants may also came from unspecified non-point sources. Therefore, we need to attempt to find non-point sources for the pollutants in the main channel of upper Geum River region.

A Study on the Applicability of Load Duration Curve for the Management of Nonpoint Source Pollution in Seohwacheon Basin (서화천 유역 비점오염원 관리를 위한 부하지속곡선 적용성 연구)

  • KAL, Byung-Seok;MUN, Hyun-Saing;HONG, Seon-Hwa;PARK, Chun-Dong;MIN, Kyeong-Ok;PARK, Jae-Beom
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.174-191
    • /
    • 2020
  • In this study, we analyzed the vulnerable areas of non-point source pollutants and management pollutants and management time by subwatershed curves in the Seohwacheon basin located upstream of Daecheongho. First, in order to create a load duration curve, a long-term flow model SWAT was constructed to create a flow duration curve, and the result was multiplied by the target water quality to create a load duration curve. For the target water quality, monitoring data values measured from November 2017 were used for the management of nonpoint source pollutants in Seohwacheon, and a value corresponding to 60 percentile of the measured data was set as the target water quality. At this time, the target water quality was limited to"slightly good"(II) when the calculated value exceeded"slightly good"(II) of the river living environment standard. The vulnerable areas of non-point source of pollution were selected using the excess rate exceeding the target water quality, and the excess pollutant was judged as a management substance and the management time was selected through seasonal evaluation.

Variations of the Pollutant Concentration by Explosive Demolition of a Building and Management Plan of Non-point Source Pollution (구조물의 해체 공정별 오염농도 변화 및 비점오염원 관리 방안)

  • Chu, Kyoung-Hoon;Yoo, Sung-Soo;Kim, Hyo-Jin;Lee, Kyoung-Hee;Ko, Kwang-Baik
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.17-26
    • /
    • 2011
  • In this study, the pollutants contained in water and soil samples taken from the explosive demolition site were examined to investigate the effects on environment, and management plan of non-point source pollution in the demolition site was suggested through characterizing the movement of the pollutant with time. As results, pH value of the water and soil samples after the demolition work was 8.5~9.3 which exceeds the Korean environmental criterion of water and soil range due to calcium hydroxide compounds in the concrete. The concentration level of heavy metals caused by the explosive demolition doesn't exceed the environmental criterion of water and soil doesn't exceed the environmental criterion of water and soil quality, and the influence of water and soil pollution on the environment was not considered. The concentration of the heavy metals was analyzed and that of Cr, Cu, Zn and Hg among the heavy metals increased after the drilling and explosive demolition. This says that concentration of the heavy metals during explosive demolition works needs to be monitored. The most pollutants with time or rain dilution into the demolition site decreased and this means that the pollutants caused by the explosive demolition might have influenced to vicinity of the demolition sites as non-point pollution.

Non-point Source Quantification Analysis Using SWAT in Nakdong River Watershed (유역모형을 이용한 낙동강 유역에서의 비점오염원 정량화)

  • HwangBo, Hyun;Kim, Dong-Il;Yoon, Young-Sam;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.367-381
    • /
    • 2010
  • Recent urbanization and abnormal weather have induced enormous changes in the characteristics of both runoff and pollutant occurrence. Thus, sophisticated watershed modeling of water quality is required. In order to manage non point sources in a watershed, quantitative analysis should be preliminarily performed. However, it is difficult to conduct quantitative analysis since complex natural phenomenon need to be reflected in the modeling. Also, travel time analysis for pollutants and separation of point and non point sources are not easy to carry out. The objective of this study is to quantify non point sources in watershed using soil and land use map and to make the full use of the results in managing non point sources. To do this, non point sources are quantified using a watershed model, SWAT (Soil and Water Assessment Tools). The result of study conform with result of National Institute of Environmental Research.

Evaluation of Pollutant loads at Inflow Streams under Ara Waterway Basin

  • Han, Sangyun;Jung, Jongtai
    • Journal of Urban Science
    • /
    • v.10 no.1
    • /
    • pp.39-48
    • /
    • 2021
  • In this study, to evaluate the characteristics of the pollution in the major inflow tributaries and major environmental facilities in the watershed of Ara waterway, An inflow flow rate measurement and water quality analysis were conducted during dry and rainy seasons. In addition, the flow rate measurement, water quality analysis, and pollutant load at each monitoring point were compared and evaluated. Influx of BOD5, T-P and T-N into the tributaries of the ARA waterway watershed, excluding the Gulpo river watershed, during dry season were only 0.007%, 0.005% and 0.004% respectively of the incoming loads in the entire ARA waterway basin. In addition, it was confirmed that the discharge pollutant loads during rainfall event was about 440 times more for BOD5, about 545 times on T-P, and about 23 times on T-N in comparison to the pollutant loads during the dry days. When the Gulhyeon rubber dam was deflated, the discharged pollutant load during a rainfall was higher than the estimated load at the G7 monitoring point because the deposited pollutants from the upstream riverbed flowed down. Therefore, during a rainy season, it is necessary to manage the influx of high-load water pollutants from the overflow and deflation of the Gulhyun rubber dam as well as to find a strategy to reduce the pollutant loads in the Gulpo river watershed.