• Title/Summary/Keyword: Non-orthogonal multiple access

Search Result 116, Processing Time 0.02 seconds

Transmit-Nulling SDMA for Coexistence with Fixed Wireless Service

  • Jo, Han-Shin;Mun, Cheol
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.1
    • /
    • pp.34-41
    • /
    • 2011
  • This paper proposes a systematic design for a precoding codebook for a transmit-ing space-division multiple access (TN-SDMA) sharing spectrum with existing fixed wireless service (FWS). Based on an estimated direction angle of a victim FWS system, an interfering transmitter adaptively constructs a codebook, forming a transmit in the direction angle, while satisfying orthogonal beamforming constraints. Sum throughput results indicate that the throughput loss of TN-SDMA relative to a practical SDMA, called per user unitary and rate control ($PU^2RC$), is lower at larger number of transmission antennas, lower signal-to-noise ratio, or a smaller number of users. In particular, a small loss (12% throughput loss) is provided for practical system parameters. Spectrum sharing results confirm that TNSDMA efficiently shares spectrum with FWS systems by reducing protection distance to more than 66 %. Although a TN-SDMA system always has lower throughput compared to $PU^2RC$ in non-coexistence scenarios; it offers an intriguing opportunity to re-use a spectrum already allocated to an FWS.

On Inflated Achievable Sum Rate of 3-User Low-Correlated SC NOMA

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.1-9
    • /
    • 2021
  • In the Internet of Thing (IoT) framework, massive machine-type communications (MMTC) have required large spectral efficiency. For this, non-orthogonal multiple access (NOMA) has emerged as an efficient solution. Recently, a non-successive interference cancellation (SIC) NOMA scheme has been implemented without loss. This lossless NOMA without SIC is achieved via correlated superposition coding (SC), in contrast to conventional independent SC. However, conventional minimum high-correlated SC for only 2-user NOMA schemes was investigated in the lossless 2-user non-SIC NOMA implementation. Thus, this paper investigates a 3-user low-correlated SC scheme, especially for an inflated achievable sum rate, with a design of 3-user low-correlated SC. First, we design the 3-user low-correlated SC scheme by taking the minimum sum rate between 3-user SIC NOMA and 3-user non-SIC NOMA, both with correlated SC. Then, simulations demonstrate that the low correlation in the direction of the first user's power allocation inflates the sum rate in the same direction, compared to that of conventional minimum high-correlated SC NOMA, and such inflation due to low correlation is also observed similarly, in the direction of the second user's power allocation. Moreover, we also show that the two low correlations of the first and second users inflates doubly in the both directions of the first and second users' power allocations. As a result, the proposed 3-user low-correlated SC could be considered as a promising scheme, with the inflated sum rate in the future fifth-generation (5G) NOMA networks.

NOMA Transceiver Design for Highway Transportation in Mobile Hotspot Networks

  • Hui, Bing;Kim, Junhyeong;Choi, Sung-Woo;Chung, Heesang;Kim, Ilgyu;Lee, Hoon
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1042-1051
    • /
    • 2016
  • The mobile hotspot network (MHN), which is capable of providing a data rate of gigabits per second at high speed, is considered a potential use case of the future enhanced mobile broadband for 5G. Because a unidirectional network deployment has been considered for an MHN, non-orthogonal multiple access (NOMA) can be employed to improve the system performance. For a practical implementation of NOMA under an MHN highway scenario where multiple pieces of MHN terminal equipment are served through the same beam simultaneously, a NOMA transceiver is proposed in this paper. For the NOMA transmitter, Gray-coded QAM constellation mapping is extended to arbitrary modulation order q. For the NOMA receiver, successive interference cancellation (SIC) is no longer necessary, and instead, a parallel demodulation is proposed. The numerical and simulation results suggest that the proposed NOMA transceiver outperforms the conventional NOMA SIC receiver and can be flexibly used for an MHN highway scenario.

Impact of Channel Estimation Errors on BER Performance of Single-User Decoding NOMA System

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 2020
  • In the fifth generation (5G) and beyond 5G (B5G) mobile communication, non-orthogonal multiple access (NOMA) has attracted great attention due to higher spectral efficiency and massive connectivity. We investigate the impacts of the channel estimation errors on the bit-error rate (BER) of NOMA, especially with the single-user decoding (SUD) receiver, which does not perform successive interference cancellation (SIC), in contrast to the conventional SIC NOMA scheme. First, an analytical expression of the BER for SUD NOMA with channel estimation errors is derived. Then, it is demonstrated that the BER performance degrades severely up to the power allocation less than about 20%. Additionally, we show that for the fixed power allocation of 10% in such power allocation range, the signal-to-noise (SNR) loss owing to channel estimation errors is about 5 dB. As a consequence, the channel estimation error should be considered for the design of the SUD NOMA scheme.

On Power Calculation for First and Second Strong Channel Users in M-user NOMA System

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.49-58
    • /
    • 2020
  • Non-orthogonal multiple access (NOMA) has been recognized as a significant technology in the fifth generation (5G) and beyond mobile communication, which encompasses the advanced smart convergence of the artificial intelligence (AI) and the internet of things (IoT). In NOMA, since the channel resources are shared by many users, it is essential to establish the user fairness. Such fairness is achieved by the power allocation among the users, and in turn, the less power is allocated to the stronger channel users. Especially, the first and second strong channel users have to share the extremely small amount of power. In this paper, we consider the power optimization for the two users with the small power. First, the closed-form expression for the power allocation is derived and then the results are validated by the numerical results. Furthermore, with the derived analytical expression, for the various channel environments, the optimal power allocation is investigated and the impact of the channel gain difference on the power allocation is analyzed.

Derivation of Union Upper Bound on BER of BICM System Employing Non-Gaussian Decoding Metric for Downlink CellularOFDMA Networks (직교 주파수 분할 다중 접속 방식을 사용하는 하향 링크 셀룰러 시스템의 비가우시안 복호 성능에 대한 상계 유도)

  • Son, Jae-Yong;Cheun, Kyung-Whoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.522-527
    • /
    • 2012
  • In this paper, union upper bound on convolutional coded bit error rates (BER) is derived for downlink orthogonal frequency division multiple access (OFDMA) networks. According to the numerical results, for the small network loads, the BER performance with Laplacian decoding metric outperforms the BER performance with Gaussian decoding metric under downlink OFDMA networks with Viterbi decoder.

Throughput maximization for underlay CR multicarrier NOMA network with cooperative communication

  • Manimekalai, Thirunavukkarasu;Joan, Sparjan Romera;Laxmikandan, Thangavelu
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.846-858
    • /
    • 2020
  • The non-orthogonal multiple access (NOMA) technique offers throughput improvement to meet the demands of the future generation of wireless communication networks. The objective of this work is to further improve the throughput by including an underlay cognitive radio network with an existing multi-carrier NOMA network, using cooperative communication. The throughput is maximized by optimal resource allocation, namely, power allocation, subcarrier assignment, relay selection, user pairing, and subcarrier pairing. Optimal power allocation to the primary and secondary users is accomplished in a way that target rate constraints of the primary users are not affected. The throughput maximization is a combinatorial optimization problem, and the computational complexity increases as the number of users and/or subcarriers in the network increases. To this end, to reduce the computational complexity, a dynamic network resource allocation algorithm is proposed for combinatorial optimization. The simulation results show that the proposed network improves the throughput.

Unipodal 2PAM NOMA without SIC: toward Super Ultra-Low Latency 6G

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.69-81
    • /
    • 2021
  • While the fifth generation (5G) and beyond 5G (B5G) mobile communication networks are being rolled over the globe, several world-wide companies have already started to prepare the sixth generation (6G). Such 6G mobile networks targets ultra-reliable low-latency communication (URLLC). In this paper, we challenge to reduce the inherent latency of existing non-orthogonal multiple access (NOMA) in 5G networks of massive connectivity. First, we propose the novel unipodal binary pulse amplitude modulation (2PAM) NOMA, especially without SIC, which greatly reduce the latency in existing NOMA. Then, the achievable data rates for the unipodal 2PAM NOMA are derived. It is shown that for unequal gain channels, the sum rate of the unipodal 2PAM NOMA is comparable to that of the standard 2PAM NOMA, whereas for equal gain channels, the sum rate of the unipodal 2PAM NOMA is superior to that of the standard 2PAM NOMA. In result, the unipodal 2PAM could be a promising modulation scheme for NOMA systems toward 6G.

An Analytical Expression for BER Performance of Intelligent Reflecting Surface Assisted NOMA

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.23-29
    • /
    • 2022
  • To improve spectrum and energy efficiency in the fifth generation (5G) wireless channels, intelligent reflecting surface (IRS) transmissions have been envisioned, possibly towards the sixth generation (6G) networks. In this paper, we analyze the bit-error rate (BER) performance of intelligent reflecting surface (IRS) assisted non-orthogonal multiple access (NOMA) systems. First, we derive a closed-form expression of the BER in terms of Q functions. Then we analyze the BER improvement of the IRS NOMA system over the conventional NOMA system with respect to the power allocation. Furthermore, we also demonstrate numerically the BER improvement of the IRS NOMA network over the conventional NOMA network in respect of the number of reflecting devices.

Coordinated Direct and Relayed Transmission based on NOMA and Backscattering

  • Fang, Zhaoxi;Lu, Yingzhi;Zhou, Jing;Li, Qi;Shi, Haiyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3124-3137
    • /
    • 2022
  • We propose a spectral-efficient coordinated direct and relayed transmission (CDRT) scheme for a relay-assisted downlink system with two users. The proposed scheme is based on backscatter communication (BC) and non-orthogonal multiple access (NOMA) technique. With the proposed BC-NOMA-CDRT scheme, both users can receive one packet within one time slot. In contrast, in existing NOMA-CDRT schemes, the far user is only able to receive one packet in two time slots due to the half-duplex operation of the relay. We investigate the outage of the BC-NOMA-CDRT scheme, and derive the outage probability expressions in closed-form based on Gamma distribution approximation and Gaussian approximation. Numerical results show that the analytical results are accurate and the BC-NOMA-CDRT scheme outperforms the conventional NOMA-CDRT significantly.