• Title/Summary/Keyword: Non-orthogonal multiple access

Search Result 115, Processing Time 0.031 seconds

Numerical Analysis of Sufficient Condition on Larger Rate Volume of CIS/non-SIC over IIS/SIC in 3-User NOMA (삼중 사용자 비직교 다중 접속에서 IIS/SIC에 대한 CIS/non-SIC의 확대 전송률 용적의 충분조건의 수치 해석)

  • Chung, Kyuhyuk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.8
    • /
    • pp.29-35
    • /
    • 2021
  • Since a sufficient condition on the larger rate volume of 3-user correlated information sources (CIS)/non-successive interference cancellation (SIC) non-orthogonal multiple access (NOMA) over independent information sources (IIS)/SIC NOMA has not been investigated, this paper analyzes such a sufficient condition. First, we demonstrates that the rate volume of 3-user CIS/SIC NOMA is the same as a portion of the rate volume of 3-user IIS/SIC NOMA. Then, by identifying a dominant rate region, we calculate the sufficient condition on the larger rate volume of 3-user CIS/non-SIC NOMA over 3-user IIS/SIC NOMA. We also show that with such condition, the rate volume of 3-user CIS/non-SIC NOMA can be larger than that of 3-user IIS/SIC NOMA.

On Larger Rate Volume of non-SIC NOMA over SIC NOMA for 3-user Correlated Information Sources (삼중 상관 정보원에서 SIC 대한 non-SIC 비직교 다중 접속의 확장 전송률 용적에 관해)

  • Chung, Kyu-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.457-464
    • /
    • 2021
  • This paper investigates the achievable rate volumes for non-successive interference cancellation(SIC) non-orthogonal multiple access(NOMA) schemes, especially for 3-user correlated information sources(CIS). First, the closed-form expressions for the achievable rate volumes of non-SIC 3-user CIS NOMA are derived. Then it is numerically shown that the large correlation coefficients, as the achievable rate volumes of non-SIC 3-user CIS NOMA is larger than that of conventional SIC 3-user independent information sources(IIS) NOMA. We also demonstrate by various comparisons that the impact of the correlation coefficients of weaker channel gain users on achievable rate volume is more significant than those of stronger channel gain users.

On Negative Correlation Bit-to-Symbol(: B2S) Mapping for NOMA with Correlated Information Sources in 5G Systems (5G 시스템에서 상관 정보원의 비직교 다중접속을 위한 음수의 상관관계 계수 B2S 사상)

  • Chung, Kyu-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.881-888
    • /
    • 2020
  • In this paper, in order to improve the degraded BER performance of the stronger channel user in non-orthogonal multiple access(: NOMA) with interactive mobile users, we propose the negative correlation bit-to-symbol(: B2S) mapping. First, the closed-form expression for the BER of the negative correlation B2S mapping receiver is derived, and then it is shown that the BER of the negative correlation B2S mapping receiver is improved, compared with those of the ideal perfect successive interference cancellation(: SIC) receiver and positive correlation receiver. Additionally, based on the analytical expression, signal-to-noise(: SNR) gain is calculated, and the superiority of the negative correlation B2S mapping receiver is validated.

On Additive Signal Dependent Gaussian Noise Channel Capacity for NOMA in 5G Mobile Communication

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.37-44
    • /
    • 2020
  • The fifth generation (5G) mobile communication has been commercialized and the 5G applications, such as the artificial intelligence (AI) and the internet of things (IoT), are deployed all over the world. The 5G new radio (NR) wireless networks are characterized by 100 times more traffic, 1000 times higher system capacity, and 1 ms latency. One of the promising 5G technologies is non-orthogonal multiple access (NOMA). In order for the NOMA performance to be improved, sometimes the additive signal-dependent Gaussian noise (ASDGN) channel model is required. However, the channel capacity calculation of such channels is so difficult, that only lower and upper bounds on the capacity of ASDGN channels have been presented. Such difficulties are due to the specific constraints on the dependency. Herein, we provide the capacity of ASDGN channels, by removing the constraints except the dependency. Then we obtain the ASDGN channel capacity, not lower and upper bounds, so that the clear impact of ASDGN can be clarified, compared to additive white Gaussian noise (AWGN). It is shown that the ASDGN channel capacity is greater than the AWGN channel capacity, for the high signal-to-noise ratio (SNR). We also apply the analytical results to the NOMA scheme to verify the superiority of ASDGN channels.

On Power Splitting under User-Fairness for Correlated Superposition Coding NOMA in 5G System

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.68-75
    • /
    • 2020
  • Non-orthogonal multiple access (NOMA) has gained the significant attention in the fifth generation (5G) mobile communication, which enables the advanced smart convergence of the artificial intelligence (AI), the internet of things (IoT), and many of the state-of-the-art technologies. Recently, correlated superposition coding (SC) has been proposed in NOMA, to achieve the near-perfect successive interference cancellation (SIC) bit-error rate (BER) performance for the stronger channel users, and to mitigate the severe BER performance degradation for the weaker channel users. In the correlated SC NOMA scheme, the stronger channel user BER performance is even better than the perfect SIC BER performance, for some range of the power allocation factor. However, such excessively good BER performance is not good for the user-fairness, i.e., the more power to the weaker channel user and the less power to the stronger channel user, because the excessively good BER performance of the stronger channel user results in the worse BER performance of the weaker channel user. Therefore, in this paper, we propose the power splitting to establish the user-fairness between both users. First, we derive a closed-form expression for the power splitting factor. Then it is shown that in terms of BER performance, the user-fairness is established between the two users. In result, the power splitting scheme could be considered in correlated SC NOMA for the user-fairness.

Deep Learning-Based Modulation Detection for NOMA Systems

  • Xie, Wenwu;Xiao, Jian;Yang, Jinxia;Wang, Ji;Peng, Xin;Yu, Chao;Zhu, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.658-672
    • /
    • 2021
  • Since the signal with strong power need be demodulated first for successive interference cancellation (SIC) receiver in non-orthogonal multiple access (NOMA) systems, the base station (BS) need inform the near user terminal (UT), which has allocated higher power, of the far UT's modulation mode. To avoid unnecessary signaling overhead of control channel, a blind detection algorithm of NOMA signal modulation mode is designed in this paper. Taking the joint constellation density diagrams of NOMA signal as the detection features, the deep residual network is built for classification, so as to detect the modulation mode of NOMA signal. In view of the fact that the joint constellation diagrams are easily polluted by high intensity noise and lose their real distribution pattern, the wavelet denoising method is adopted to improve the quality of constellations. The simulation results represent that the proposed algorithm can achieve satisfactory detection accuracy in NOMA systems. In addition, the factors affecting the recognition performance are also verified and analyzed.

Higher Spectral Efficiency of 3-User Cross CSC NOMA in 5G Systems

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.17-25
    • /
    • 2021
  • As a new paradigm in non-orthogonal multiple access (NOMA), correlated superposition coding (CSC) has gained an attention in the literature of NOMA, in contrast to standard independent superposition coding (ISC). In the conventional 3-user CSC scheme, it has been reported that the average allocated power can be reduced, owing to an introduced correlation between transmitted signals. Thus, this paper proposes a 3-user cross CSC scheme with purely-imaginary correlation coefficients. First, we derive the achievable data rates of the proposed 3-user cross CSC scheme, for each of the three users. Then, simulations demonstrate that for the proposed 3-user cross CSC scheme, the achievable data rates of the first and second users increase greatly and slightly, respectively, whereas the achievable data rate of the third user decreases little, compared to those of the conventional 3-user CSC scheme. In addition, we also show that the sum rate of the three users of the proposed 3-user cross CSC scheme is much larger than that of the three users of the conventional 3-user CSC scheme. As a result, the proposed 3-user cross CSC scheme could be a solution to the problem of the reduction of the average allocated total power in the conventional 3-user CSC scheme toward the fifth-generation (5G) NOMA mobile networks.

Pseudo Complex Correlation Coefficient: with Application to Correlated Information Sources for NOMA in 5G systems

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.42-51
    • /
    • 2020
  • In this paper, the authors propose the pseudo complex correlation coefficient (PCCC) of the two complex random variables (RV), because the four real correlation coefficients (RCC) of the corresponding four real RVs cannot be obtained only from the complex correlation coefficient (CCC) of given two complex RV. Such observation is motivated by the general statement; "The complex jointly-Gaussian random M-vector cannot be completely described by the complex covariance matrix, even though the real Gaussian random 2M-vector can be completely descried by the real covariance matrix. Therefore, in order to describe completely the complex jointly-Gaussian random M-vector, we need an additional matrix, namely the complex pseudo-covariance matrix, along with the complex covariance matrix." Then, we apply PCCC to correlated information sources (CIS) for non-orthogonal multiple access (NOMA) in 5G system, and investigate impact of the proposed PCCC on the achievable data rate of the stronger channel user in the conventional successive interference cancellation (SIC) NOMA with CIS. It is shown that for the given same CCC, the achievable data rates with the different PCCC are different, because the corresponding RCC are different. We also show that as the absolute value of the same CCC increases, the impact of the different PCCC becomes more significant.

NOMA Transmission Scheme using MU-MIMO and STBC (MU-MIMO와 STBC를 적용한 NOMA 전송 기법)

  • Bangwon, Seo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.1
    • /
    • pp.45-50
    • /
    • 2023
  • In order to improve a total system throughput when a base station (BS) transmits data to user equipments (UEs), we propose a scheme to apply multiuser multiple-input multiple-output (MU-MIMO), space-time block coding (STBC), and non-orthogonal multiple access (NOMA) together. An MU-MIMO is applied to two UEs near the BS and STBC is applied to a UE far from the BS because of the difficulty of obtaining the channel information. Also NOMA is applied to differentiate the data from the near UE and the far UE. Two orthognal precoding vectors are used for the MU-MIMO UEs and it causes no interference between them. The STBC technique with the two procoding vectors are also used for the far UEs. Through performance analysis and simulation, we show that the proposed scheme has higher total system throughput than the conventional ones.

On Design and Performance Analysis of Asymmetric 2PAM: 5G Network NOMA Perspective (비대칭 2PAM의 설계와 성능 분석: 5G 네트워크의 비직교 다중 접속 관점에서)

  • Chung, Kyuhyuk
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.10
    • /
    • pp.24-31
    • /
    • 2020
  • In non-orthogonal multiple access (NOMA), the degraded performance of the weaker channel gain user is a problem. In this paper, we propose the asymmetric binary pulse amplitude modulation (2PAM), to improve the bit-error rate (BER) performance of the weaker channel user in NOMA with the tolerable BER loss of the stronger channel user. First, we design the asymmetric 2PAM, calculate the total allocated power, and derive the closed-form expression for the BER of the proposed scheme. Then it is shown that the BER of the weaker channel user improves, with the small BER loss of the stronger channel user. The superiority of the proposed scheme is also validated by demonstating that the signal-to-noise ratio (SNR) gain of the weaker channel user is about 10 dB, with the SNR loss of 3 dB of the stronger channel user. In result, the asymmetric 2PAM could be considered in NOMA of 5G systems. As a direction of the future research, it would be meaningful to analyze the achievable data rate for the propsed scheme.