Browse > Article
http://dx.doi.org/10.13067/JKIECS.2020.15.5.881

On Negative Correlation Bit-to-Symbol(: B2S) Mapping for NOMA with Correlated Information Sources in 5G Systems  

Chung, Kyu-Hyuk (Dept. Software Science, Dankook University)
Publication Information
The Journal of the Korea institute of electronic communication sciences / v.15, no.5, 2020 , pp. 881-888 More about this Journal
Abstract
In this paper, in order to improve the degraded BER performance of the stronger channel user in non-orthogonal multiple access(: NOMA) with interactive mobile users, we propose the negative correlation bit-to-symbol(: B2S) mapping. First, the closed-form expression for the BER of the negative correlation B2S mapping receiver is derived, and then it is shown that the BER of the negative correlation B2S mapping receiver is improved, compared with those of the ideal perfect successive interference cancellation(: SIC) receiver and positive correlation receiver. Additionally, based on the analytical expression, signal-to-noise(: SNR) gain is calculated, and the superiority of the negative correlation B2S mapping receiver is validated.
Keywords
NOMA; Superposition Coding; SIC; Power Allocation; Correlation Coefficient;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, C.-L. I, and H. V. Poor, "Application of non-orthogonal multiple access in LTE and 5G networks,'' IEEE Commun. Mag., vol. 55, no. 2, Feb. 2017, pp. 185-191.   DOI
2 M.-C. Yang, "An adaptive tone reservation scheme for PAPR reduction of OFDM signals," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 5, Oct. 2019, pp. 817-824.
3 H.-J. Ahn and M.-C. Yang, "Analysis of Automatic Neighbor Relation Technology in Self Organization Networks of LTE," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 5, Oct. 2019, pp. 893-900.
4 K. Zhang and H.-J. Suh, "An analysis of multiuser diversity technology in the MIMO-OFDM system," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 6, Dec. 2019, pp. 1121-1128.   DOI
5 L. Dai, B. Wang, Y. Yuan, S. Han, C.-L. I, and Z. Wang, "Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends," IEEE Commun. Mag., vol. 53, no. 9, Sept. 2015, pp. 74-81.   DOI
6 D. Wan, M. Wen, F. Ji, H. Yu, and F. Chen, "Non-orthogonal multiple access for cooperative communications: Challenges, opportunities, and trends," IEEE Wireless Commun., vol. 25, no. 2, May 2018, pp. 109-117.   DOI
7 M. Aldababsa, C. Goztepe, G. K. Kurt, and O. Kucur, "Bit error rate for NOMA network," IEEE Commun. Lett., vol. 24, no. 6, June 2020, pp. 1188-1191.   DOI
8 A.-A.-A. Boulogeorg, N. D. Chatzidiamantis, and G. K. Karagiannid, "Non-orthogonal multiple access in the presence of phase noise," IEEE Commun. Lett., vol. 24, no. 5, May 2020, pp. 1133-1137.   DOI
9 T. Assaf, A. Al-Dweik, M. E. Moursi, and H. Zeineldin, "Exact BER Performance Analysis for Downlink NOMA Systems Over Nakagami-m Fading Channels," IEEE Access, vol. 7, 2019, pp. 134539-134555.   DOI
10 L. Bariah, S. Muhaidat, and A. Al-Dweik, "Error Probability Analysis of Non-Orthogonal Multiple Access Over Nakagami-m Fading Channels," IEEE Trans. Commun., vol. 67, no. 2, Feb. 2019, pp. 1586-1599.   DOI
11 I. Lee and J. Kim, "Average Symbol Error Rate Analysis for Non-Orthogonal Multiple Access With M-Ary QAM Signals in Rayleigh Fading Channels," IEEE Commun. Lett., vol. 23, no. 8, Aug. 2019, pp. 1328-1331.   DOI
12 Z. Yang, W. Xu, C. Pan, Y. Pan, and M. Chen, "On the optimality of power allocation for NOMA downlinks with individual QoS constraints," IEEE Commun. Lett., vol. 21, no. 7, July 2017, pp. 1649-1652.   DOI
13 Z. Yang, W. Xu, Y. Pan, C. Pan, and M. Chen, "Energy efficient resource allocation in machine-to-machine communications with multiple access and energy harvesting for IoT," IEEE Internet Things J., vol. 5, no. 1, Feb. 2018, pp. 229-245.   DOI
14 Q. Wang, R. Zhang, L.-L. Yang, and L. Hanzo, "Non-orthogonal multiple access: A unified perspective," IEEE Wireless Commun., vol. 25, no. 2, Apr. 2018, pp. 10-16.   DOI
15 Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, "Non-orthogonal multiple access (NOMA) for cellular future radio access," in Proc. IEEE 77th Veh. Technol. Conf. (VTC Spring), Dresden, Germany, June 2013, pp. 1-5.
16 K. Chung, "Optimal Detection for NOMA systems with correlated information sources of interactive mobile users," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 4, Aug. 2020, pp. 651-657.   DOI
17 K. Chung, "On power of correlated superposition coding in NOMA," J. Institute of Korean Electrical and Electronics Engineers, vol. 24, no. 1, Mar. 2019, pp. 360-363.