• Title/Summary/Keyword: Non-open excavation method

Search Result 9, Processing Time 0.023 seconds

Study on the Structural Safety for the Non-Open excavation method by Using Steel Tubular Roof (대구경 강관을 이용한 비개착공법의 구조적 안전성에 대한 연구)

  • Kim, Kyong-Gon;Kim, Kyeong-Hwan;Kim, Hyo-Jin;Lee, Sang-Ho
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.4
    • /
    • pp.49-57
    • /
    • 2009
  • The development and use of underground space in the city have been expanded considerably worldwide due to the growing population and traffic. Because the construction of underground causes some problems including traffic jam and safety accidents, the non-open excavation construction method are commonly used. NTR (New Tubular Roof) method which is one of the non-open excavation method is investigated in this study. The structural safety of underground structures by using NTR method is evaluated by ANSYS 9.0. The tubular roof according to diameters are analysed by ANSYS 9.0 at critical construction step. Finally, according the diameter and thickness of tubular roof the stress nad dispacement are analyzed and then the The efficient use of tubular roof is suggested from relationship between tubular's thickness and stress condition.

  • PDF

A Study for Drainage Pipe Construction Method using a Boring Machine (천공장치를 이용한 배수설비 연결관 시공 기술에 관한 연구)

  • Chang, Jae-Goo;Kang, Seon-Hong;Kim, Dong-Eun;Jung, Tae-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.869-875
    • /
    • 2011
  • Ministry of Environment has been promoting BTL business of the sewer rehabilitation which continues from 2005 up to now. Sewer rehabilitation is classified into three parts : wastewater pipe rehabilitation, rainwater pipe rehabilitation and drainage equipment rehabilitation. Drainage equipment rehabilitation is that drainage pipe connects wastewater pipe directly without water-purifier. In the drainage equipment construction, it is inevitable to have the damage of ground structures(wall, gate and U drain, etc) when an open excavation method is used. Therefore it is necessary to develop non-excavation method to connect drainage pipe and wastewater pipe like jacking method to avoid the damage of ground structure. This paper has conducted an analysis of the non-excavation method using a boring machine attached to backhoe, which is issued the verification certificate of environmental technology according to the Development of and Support for Environmental Technology Act, article.7. The index set in this analysis was sectionalized to the condition of construction, the grade of drainage pipe, the size of excavated hole, the amount of waste cement concrete and asphalt concrete and the benefit effect compared to open excavation method.

Experimental study to determine the optimal tensile force of non-open cut tunnels using concrete modular roof method

  • Jung, Hyuk-Sang;Kim, Jin-Hwan;Yoon, Hwan-Hee;Sagong, Myung;Lee, Hyoung-Hoon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.229-236
    • /
    • 2022
  • In this study, a model experiment and field experiment was conducted to introduce the optimal tensile force when constructing a non-open cut tunnel according to the ground conditions of sandy soil. CMR (Concrete Modular Roof) method is economical because of the high precision and excellent durability, and corrosion resistance, and the inserted parts can be used as the main structure of a tunnel. In addition the CMR method has a stable advantage in interconnection because the concrete beam is press-fitted compared to the NTR (New Tubular Roof) method, and the need for quality control can be minimized. The ground conditions were corrected by adjusting the relative density of sandy soil during the construction of non-open cut tunnels, and after introducing various tensile forces, the surface settlement according to excavation was measured, and the optimal tensile force was derived. As a result of the experiment, the amount of settlement according to the relative density was found to be minor. Furthermore, analysis of each tensile force based on loose ground conditions resulted in an average decrease of approximately 22% in maximum settlement when the force was increased by 0.8 kN per segment. Considering these results, it is indicated that more than 2.0 kN tensile force per segment is recommended for settlement of the upper ground.

Joint Element Structure Method on the Subway Box Structure unere Railroad (철도하부 가도교 설치에 대한 JES공법)

  • Pi, Tae-Hee;Cho, Kook-Hwan;SaGong, Myung
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.973-981
    • /
    • 2008
  • This document presents the JES(Joint Element Structure) method that has been adopted for the firs time in our country for the construction of the structure crossing under the railroad without open excavation. Front Jacking Method, Tubular Roof Construction Method, New Tubular Roof Method and Joint Element Structure Method are commonly used for the construction of structures crossing under the railroad. JES Method, frequently used in Japan recently, is a new method to construct the structures crossing under the railroad in a safe manner and in a relatively short period of time by utilizing the steel elements with the joints through which the load in the vertical angle to the axial direction is transferred to the next element. The elements are tied to each other through the joints to form the permanent walls of a Rahmen structure under the road without open excavation and without limitation to the length in a convenient way. Through the case study in the project of a Subway Box Culvert Improvement for the Gyeonguiseon Railroad in front of Yonsei University using the JES Method, the cost and period of construction in various types of soil is investigated compared to the Front Jacking Method. Furthermore, by analyzing the results of instrumentation measurements carried out throughout the construction, comparison between the actual displacement in the ground and the predicted displacement in the design is made to provide the considerations to be counted for the design. In conclusion, comparison in the field of economic feasibility, constructability and safety between the JES Method and Front Jacking Method, which is most frequently adopted in our country at present, is made to present the JES Method as a new alternative for the non-open excavation construction method for the structures crossing under the railway.

  • PDF

A Study on Sites Application of Non-open-cut Tunnel Method with Slot Holes in Steel Pipe Pumping (강관압입후 슬롯 홀을 갖는 비개착 터널공법의 현장적용에 관한 연구)

  • Chae, Young-Suk;Song, Kwan-Kwon;Min, In-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.47-51
    • /
    • 2015
  • In the study, a new non-open cut tunnel steel pipe method using slot hole has been developed. As is overcomes shortcomings of conventional methods, it is applied to the field. The main concept of the new method is the steel pipe pumping system with slot holes which, by means of formation slot holes between each steel pipe, applied to the magnitude of the relaxed earth pressure caused by excavation to the ground to prevent ground displacement. The stability of the support members and effect of displacement control of the new method were verified through several ways as numerical analysis and site test. The new method was applied to the construction of a 11.5m wide, 7.4m high and 50m long section that passes side subway and large buildings in inner city. By applying the new method, tunnel construction was successfully completed in 6 months. It decreases the construction period to 30% compared to that of conventional methods, and ground was almost negligible.

Application of Non-Open Cut H.A.S Method to Improve Constructability (시공성 향상을 위한 비개착 H.A.S 공법 적용에 관한 연구)

  • Choi, Jung-Youl;Jang, Sung-Ho;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.765-773
    • /
    • 2022
  • This study is a study on the application of a horizontal excavation machine system to improve constructability. In this study, the structural stability of non-covered temporary facilities was evaluated by comparing field measurements and numerical analysis. In addition, the appropriateness of the measurement results was analyzed by comparing and analyzing the results of numerical analysis with the analysis results applying the Gaussian probability density function to the measurement results. In this study, structural safety and long-term durability of the linkage were analyzed based on numerical analysis. As a result of the study, it was analyzed that the non-open cut method (H.A.S. method) of this study secures structural safety and constructability as the behavior in the actual construction process is more safe than the numerical analysis results, even if the uncertainty of the ground condition is taken into account.

Analysis of pipe roof method test with a reduced-scale model (축소모형 강관추진실험 경향 분석)

  • Eum, Ki-Young;Jung, Kwan-Dong;Lee, Sung-Hyuk;Cheon, Jeong-Yeon;Jang, Hee-Jung;Lee, Jong-Tae
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.664-670
    • /
    • 2010
  • The study on mechanical behavior of the structure at the site includes experimental method and numerical analysis method. Experimental method is categorized into true-scale test and laboratory model test. A laboratory model test is to monitor the failure mechanism with a model simulated similar with a real ground so as to identify the quantitative result, while a true-scale model test is the approach which enables to identify the potential problems that may occur with a simulated construction situation similar with a real site circumstance. Thus this study was intended to carry out the experimental test of non open-cut excavation by pipe roof method which is mostly common in domestic sites. as well as was aimed at identifying the ground behavior occurred during pipe penetration using laboratory model test. Appropriate reduced-scale model was selected, taking into account of domestic geological characteristics and operation characteristics of traditional and high-speed rail trains and the qualitative evaluation of displacement was carried out based on a certain ground loss volume depending on excavation after categorizing trackbed settlement pattern by depth of top soil.

  • PDF

Analysis of Heaving and Settlement Test of Scale Model Depending on Shape of the Pipe during Pipe Roof Excavation (비개착 추진공법에서 관의 형태에 따른 축소모형 융기 및 침하 실험분석)

  • Eum, Ki-Young;Choi, Chan-Yong;Cheon, Jeong-Yeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.9-15
    • /
    • 2010
  • In this study, a non-open cut method using a round or square pipe which has been commonly employed in Korea was experimentally evaluated and the behavioral features resulting from the friction while the pipe is penetrated into the ground was identified through the scale model test. To that end, a test device was fabricated by type of penetration pipe, by which the surface displacement caused by surrounding friction resistance was monitored. To simulate the settlement and heaving by excavation stage, the test was conducted based on generalized friction condition and surface displacement and the result therof was compared and analyzed, considering the type of penetration pipe.

  • PDF

A study on the comparison by the methods of estimating the relaxation load of SEM-pile (SEM파일의 이완하중 산정방법별 이완하중량 비교 연구)

  • Kim, Hyeong-Gyu;Park, Eun-Hyung;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.543-560
    • /
    • 2018
  • With the increased development in downtown underground space facilities that vertically cross under a railway at a shallow depth, the demand for non-open cut method is increasing. However, most construction sites still adopt the pipe roof method, where medium and large diameter steel pipes are pressed in to form a roof, enabling excavation of the inside space. Among the many factors that influence the loosening region and loads that occur while pressing in steel pipes, the size of the pipe has the largest impact, and this factor may correspond to the magnitude of load applied to the underground structure inside the steel pipe roof. The super equilibrium method (SEM) has been developed to minimize ground disturbance and loosening load, and uses small diameter pipes of approximately 114 mm instead of conventional medium and large diameter pipes. This small diameter steel pipe is called an SEM pile. After SEM piles are pressed in and the grouting reinforcement is constructed, a crossing structure is pressed in by using a hydraulic jack without ground subsidence or heaving. The SEM pile, which plays the role of timbering, is a fore-poling pile of approximately 5 m length that prevents ground collapse and supports surface load during excavation of toe part. The loosening region should be adequately calculated to estimate the spacing and construction length of the piles and stiffness of members. In this paper, we conducted a comparative analysis of calculations of loosening load that occurs during the press-in of SEM pile to obtain an optimal design of SEM. We analyzed the influence of factors in main theoretical and empirical formulas applied for calculating loosening regions, and carried out FEM analysis to see an appropriate loosening load to the SEM pile. In order to estimate the soil loosening caused by actual SEM-pile indentation and excavation, a steel pipe indentation reduction model test was conducted. Soil subsidence and soil loosening were investigated quantitatively according to soil/steel pipe (H/D).